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Abstract

Recent crises have seen very large spikes in asset price risk without dramatic shifts

in fundamentals. We propose an explanation for these risk panics based on self-

ful�lling shifts in risk made possible by a negative link between the current asset

price and risk about the future asset price. This link implies that risk about

tomorrow's asset price depends on uncertainty about risk tomorrow. This dynamic

mapping of risk into itself gives rise to the possibility of multiple equilibria and

self-ful�lling shifts in risk. We show that this can generate risk panics. The impact

of the panic is larger when the shift from a low to a high risk equilibrium takes

place in an environment of weak fundamentals. The sharp increase in risk leads

to a large drop in the asset price, decreased leverage and reduced market liquidity.

We show that the model can account well for the developments during the recent

�nancial crisis.



1 Introduction

Sharp surges in risk are a prominent feature of �nancial panics, such as the turmoil

in the Fall of 2008 or the 2010 Eurozone debt crisis. Volatility, as measured by the

VIX index, more than quadrupled in the wake of the Lehman Brothers failure, and

tripled during the debt crisis. While crises entail adverse fundamental news, these

are hard-pressed to account for such large surges in risk. The precarious �scal

situation of Greece was long known. Similarly, while the 2008 panic was linked to

large scale mortgage market losses, these were not suddenly discovered in the Fall

of 2008 and had instead gradually built for at least a year prior to the panic. We

o�er a theory for such events, which we refer to as \risk panics", that focuses on

sudden large self-ful�lling shifts in risk, as well as the volatility of risk.1

Our main contribution is to develop a theoretical foundation for such risk pan-

ics. Self-ful�lling shifts in risk can occur when the current equilibrium asset price

depends on risk associated with the future asset price.2 Intuitively, higher risk

reduces asset demand, which reduces the price. There is then a dynamic degree

of freedom in the model. Risk is de�ned in terms of uncertainty about the asset

price tomorrow. But the asset price tomorrow in turn depends on risk perceptions

tomorrow. Therefore risk today depends on uncertainty about risk tomorrow.

As risk does not just depend on uncertainty about future asset payo�s but also

on future risk itself, self-ful�lling shifts in both risk and the volatility of risk are

possible.

The possibility of self-ful�lling shifts in risk arises only when the current as-

set price depends on risk about the future asset price. This link is absent in the

standard frictionless expected utility framework used in macroeconomics, where

1We do not wish to rule out the importance of fundamental shocks during the recent crises,

but we are not aware of any model that would generate such a huge spike in risk in response

to observed fundamental shocks. An alternative approach to ours is that of Caballero and

Krishnamurthy (2008), who consider a model with Knightian uncertainty (i.e. inmeasurable

risks). In that setup \new shocks" (e.g. the decision to let Lehman Brothers fail) can generate

increased uncertainty as there is no history of events to measure probabilities. Another approach

is found in Fostel and Geanakoplos (2008), where the economy can suddenly switch to a bad

state with increased asset payo� risk. In our setup the increase in risk is entirely self-ful�lling

and does not involve an exogenous increase in payo� risk.
2When we talk about \the asset price", we refer to a market portfolio of risky assets or stocks

rather than the equity of a particular �rm.
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only risk associated with future asset payo�s matters. The asset price then de-

pends on the covariance between the stochastic discount factor and these payo�s.

However, when introducing constraints on risk exposure, such as value-at-risk or

margin constraints, the asset demand again depends on risk associated with future

asset prices. Such constraints are natural in a world where highly leveraged �nan-

cial institutions are subject to the possibility of default. A substantial literature

introducing such constraints has developed in recent years.3

A simple way to model the impact of future risk and to illustrate the possibility

of self-ful�lling risk shifts is to consider a mean-variance portfolio model. This can

capture the impact of risk-based portfolio constraints, while avoiding their inher-

ent complexity.4 Moreover, the mean-variance portfolio model has a long history

in academics and is widely used in the �nancial industry. It has the important

advantage of generating a simple relationship between future asset price risk and

portfolio demand, which leads to a linear relationship between the asset price and

future asset price risk in equilibrium.

We �nd that beyond a regular fundamental equilibrium there are equilibria in

which risk and the volatility of risk uctuate in an entirely self-ful�lling way. There

is always a variable that is a coordination device for the self-ful�lling shifts in be-

liefs about risk. This can either be a variable extrinsic to the model or a macro

fundamental that is part of the model. We refer to these as respectively sunspot

and sunspot-like equilibria.5 In a sunspot-like equilibrium the fundamental vari-

able plays a dual role. It a�ects the asset price both through its regular role as

fundamental (e.g. through asset payo�s or wealth) and as a sunspot-like variable

around which beliefs about risk are coordinated.6 Sunspot-like equilibria are con-

3Examples are Brunnermeier and Pedersen (2009), Danielsson, Shin and Zigrand (2009) and

Gromb and Vayanos (2002). Danielsson et. al. (2009) �nd multiplicity in equilibrium risk

through a feedback between asset prices and wealth. This mechanism is absent in our main

analysis.
4Campbell et al. (2001) show that under some conditions the mean-variance and value-at-risk

portfolio selections are the same.
5In the limiting case where fundamental uncertainty goes to zero, sunspot-like equilibria

converge to pure sunspot equilibria.
6The term \sunspot-like" equilibria was �rst coined by Manuelli and Peck (1992). They

write: \There are two ways that random fundamentals can inuence economic outcomes. First,

randomness a�ects resources which intrinsically a�ects prices and allocation. Second, the ran-

domness can endogenously a�ect expectations or market psychology, thereby leading to excessive
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ceptually distinct from accelerator mechanisms where frictions in markets amplify

the impact of a change in the fundamental variable. Those are pure fundamental

equilibria.

Risk panics are closely related to the presence of sunspot-like equilibria. Apart

from a pure fundamental equilibrium and sunspot-like equilibrium, the model also

exhibits switching equilibria where there are exogenous shifts between a low-risk

state and a high-risk state based on a Markov process. A panic is a switch from

the low- to the high-risk state. During a panic, a macro variable suddenly becomes

a focal point for self-ful�lling shifts in beliefs about risk. The panic is therefore

not triggered by a change in the variable, but by the sudden self-ful�lling shift

in beliefs about risk that is coordinated around this variable. The panic is larger

when this variable is weak at the time of the shift (e.g. the net worth of leveraged

institutions is low or the Greek debt is high).

Our theory is consistent with the two-stage pattern of the 2007-2008 crisis:

while it started in mid-2007, a full scale �nancial panic did not hit until the Fall

of 2008. We illustrate the self-ful�lling risk shift in a version of the model where

investors (�nancial institutions) are hit by a negative wealth shock. We stress the

dual role of the deteriorating net worth of �nancial institutions. First, it has a

fundamental e�ect that can account for the initial stage of the crisis. It reduces

liquidity in the market for risky assets, which raises the volatility of asset prices

and lowers their levels.7 These e�ects are however relatively small. Second, it sets

the stage for a large �nancial panic. This occurs when the low net worth suddenly

becomes the focal point for a self-ful�lling increase in beliefs about risk. The lower

the net worth is, the larger is the impact of the panic on asset prices, volatility,

liquidity and leverage.8

volatility."
7The links between market liquidity, risk and �nancial leverage have received a lot of attention

in recent contributions such as Adrian and Shin (2008), Brunnermeier and Pedersen (2009),

Brunnermeier and Sannikov (2009), Gromb and Vayanos (2008), He and Krishnamurthy (2008a,

b), Kyle and Xiong (2001) and Xiong (2001).
8It bears emphasizing that our focus in this paper is on the possibility of self-ful�lling risk

shifts or risk panics. Every crisis has its own idiosyncratic aspects and the recent crisis obviously

has many important features that go beyond the scope of this paper. For example, we abstract

from aspects such as bank runs (through the repo market) and security complexity issues. We

also make no attempt to account for the large losses in the securitized subprime mortgage market,
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The remainder of the paper is organized as follows. Section 2 shows how

self-ful�lling shifts in risk naturally occur when the equilibrium price of an as-

set depends on the variance of the future asset price, regardless of the speci�cs

of the model. In Section 3 we develop the possibility of sunspot and sunspot-like

equilibria in a simple mean-variance portfolio model with stochastic asset payo�s

(dividends). We consider both a simple model with a closed form solution and a

more general one. In Section 4 we show that the model can also generate risk pan-

ics. Section 5 introduces wealth shocks, leading to an application to the 2007-2008

crisis in Section 6. Section 7 concludes.

2 Self-Ful�lling Risk

The key point of the paper is general and can be illustrated without relying on

the speci�cs of a particular model. Consider a market where demand or supply

depends not only on the current price but also on risk associated with the future

price. The equilibrium price then depends on this risk. We write this in simple

linear form as:

Qt = �0 + �1Riskt + �2EtQt+1 + �3yt (1)

where Riskt = vart(Qt+1). Apart from risk, the price can depend on the expected

price tomorrow and on a fundamental variable yt that exogenously shifts demand

or supply. The expected future price naturally emerges in dynamic asset pricing

models, but is not critical to the main point here (i.e. �2 could be zero). The key

parameter for our point is �1, which relates the price to risk about the future price.

2.1 Fundamental and sunspot equilibria

Consider �rst a case where the price is not directly a�ected by the fundamental

yt, i.e. �3 = 0 in (1). It is immediate that there is an equilibrium, which we refer

to as the fundamental equilibrium, where the price is constant:

Qt =
�0

1� �2
(2)

which we simply model as a negative wealth shock to leveraged investors.

4



This is not the only equilibrium however. Consider equilibria where the asset price

depends on a sunspot variable St that does not enter (1):

Qt = ~Q� V S2t (3)

where ~Q and V are parameters. Assume that St is persistent through an AR

process:

St+1 = �St + �t+1 (4)

where � 2 h0; 1i and the innovation �t+1 has a symmetric distribution with mean
zero and variance �2. We denote the variance of �2t+1 by !

2.

Equations (3) and (4) imply that:

EtQt+1 = ~Q� V �2S2t � V �2 (5)

Riskt = vart(Qt+1) = 4V
2�2�2S2t + V

2!2 (6)

Note that risk is time-varying in a sunspot equilibrium where V 6= 0. Substituting
(3), (5) and (6) into (1), solve for the parameters ~Q and V by equating respectively

the constant terms and terms proportional in S2t on the left and right hand side.

The resulting system has two solutions. One is the fundamental equilibrium, with

V = 0 and ~Q equal to (2), and the other is:

V = �1� �2�
2

4�1�2�2
(7)

~Q =
1

1� �2

�
�0 + �1V

2!2 � �2V �2
�

(8)

The key parameter is clearly the coe�cient on Riskt in (1). When risk does

not a�ect the asset price (�1 = 0), there is only the fundamental equilibrium.

Otherwise the sunspot equilibrium also arises. The underlying intuition is most

easily discussed when the expected future price does not enter (1), so that �2 = 0.

In that case:

Qt = �0 + �1Riskt (9)

The same equation one period later tells us that the future asset price depends on

future risk:

Qt+1 = �0 + �1Riskt+1
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Taking the variance on both sides shows that current risk is linked to uncertainty

about future risk:

Riskt = �
2
1vart(Riskt+1) (10)

Risk does not depend on uncertainty about future fundamental shocks, but

instead on uncertainty about future risk itself. This dynamic mapping of risk into

itself opens up the possibility for multiple equilibria. Clearly, zero risk is an equi-

librium. But any process for Riskt, unrelated to fundamentals, is an equilibrium

as long as it satis�es (10). This process must clearly lead to joint shifts in risk and

uncertainty about risk as they are proportional in (10). One process that satis�es

(10) is described in (6), where Riskt is linear in S
2
t and the sunspot follows an

AR process. Uncertainty about future risk will then depend on S2t as well because

vart(S
2
t+1) = 4�

2�2S2t + !
2.9

2.2 Sunspot-like equilibrium

We have shown that when the fundamental yt does not enter (1), the model exhibits

a fundamental and a pure sunspot equilibrium. The sunspot variable St on which

expectations of risk coordinate can be any variable. In particular, it can be the

variable yt. This corresponds to a situation where changes in a variable, such as

the �scal prospects of a country, a�ect the price in a market that is not linked to

the country in any fundamental way.

Consider now the situation where yt has a fundamental impact, i.e. �3 6= 0 in
(1). In addition to the fundamental equilibrium, there is a sunspot-like equilibrium

where yt plays a dual role. It �rst has a fundamental role through its direct impact

on the asset price in (1). It also has a sunspot role as the variable on which agents

coordinate beliefs about risk.

To solve for the sunspot-like equilibrium, assume that yt follows the same au-

toregressive process as (4), and conjecture the following form of the asset price:

Qt = ~Q+ vyt � V y2t
The parameters ~Q, v and V are solved analogously to that for the sunspot equi-

librium. There are again two equilibria. The �rst is the fundamental equilibrium

9In fact, an alternative way to solve (9) is to simply conjecture Riskt = � + �S
2
t with St an

AR process. In that case (1) gives Qt and one can solve for � and � by equating the conjectured

process for Riskt with that implied by the solution for the price.
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where V = 0, v = �3= (1� �2�) and ~Q = (�0 � �1v2�2)=(1 � �2). In the funda-
mental equilibrium the asset price depends linearly on yt (i.e. V = 0), and risk is

constant: Riskt = v
2�2.

The other equilibrium is the sunspot-like equilibrium, where:

V = �1� �2�
2

4�1�2�2
(11)

v = � �3�

1� � (12)

~Q =
1

1� �2

�
�0 + �

2
1v
2�2 + �1V

2!2 + �2V �
2
�

(13)

This equilibrium converges to the pure sunspot equilibrium of the previous section

in the limit where �3 ! 0. In that pure sunspot equilibrium yt only plays a

sunspot role (v = 0 and V 6= 0). As we raise �3 above 0, yt takes on a dual

role as a fundamental and a sunspot. But even as �3 becomes big, the sunspot

role remains large. The coe�cient V in (11) is not a function of �3 at all and

is identical to the pure sunspot case (7). The term V y2t in the equilibrium price

therefore captures self-ful�lling shifts in risk coordinated around the variable yt.

Although in a very di�erent context, not involving self-ful�lling risk shifts,

Manuelli and Peck (1992) and Spears, Srivastava and Woodford (1990) present

models with sunspot-like equilibria. Spears, Srivastava and Woodford (1990) point

out that \...a sharp distinction between \sunspot equilibria" and \non-sunspot

equilibria" is of little interest in the case of economies subject to stochastic shocks

to fundamentals." Indeed, as we raise �3 slightly above 0, the sunspot-like equi-

librium is technically no longer a pure sunspot equilibrium, but it is e�ectively

indistinguishable.

3 A Simple Mean-Variance Portfolio Choice Model

We now show how the linkage between risk on the future asset price and the current

price emerges in a simple mean-variance portfolio choice model. The model centers

on the allocation of portfolios between risky equity and a risk-free bond. We �rst

consider the case where the return on the bond is exogenous as this allows us to

derive a closed-form solution for the fundamental and sunspot-like equilibria. We

then endogeneize the interest rate in a full general equilibrium setup.
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3.1 Model Description

The model complexity is kept to a strict minimum. We consider an overlapping

generation setup where investors are born with wealth WI . They invest in equity

and bonds and consume the return on their investment when old.

The bond pays an exogenous constant gross return R. This assumption, which

is often made in the �nance literature, allows us to derive a closed form solution. It

implicitly assumes that there is a risk-free technology with a constant real return

R that is in in�nite supply. This assumption is not crucial to our results and is

relaxed in Section 3.5 below.

Equity consists of a claim on a tree with stochastic payo�. There are K trees,

each producing an exogenous stochastic output (dividend) At. Denoting the equity

price by Qt, the equity return from t to t+ 1 is:

RK;t+1 =
At+1 +Qt+1

Qt
(14)

Agents face uncertainty both about the dividend and the future equity price. The

dividend is equal to �A(1 +mSt), where St follows the process (4). St is the only

state variable in the model. Whenm = 0 the dividend is a constant and St becomes

a pure sunspot. When m > 0, St has a fundamental impact on the equity payo�.

Investors born at time t maximize a mean-variance utility over their portfolio

return:

EtR
p
t+1 � 0:5vart(Rpt+1) (15)

where  measures risk aversion and the portfolio return is:

Rpt+1 = �tRK;t+1 + (1� �t)R

�t denotes the portfolio share invested in equity. The gross return on equity and

bonds are RK;t+1 and R respectively. The equity market clearing condition is

�tWI = QtK (16)

The OLG assumption is not critical to the results but simpli�es the analysis

in two ways. First, it avoids the well-known dynamic hedge term in the optimal

portfolio that arises in multi-period portfolio problems. Second, the wealth level

would be an additional state variable (in addition to St) if agents had in�nite
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lives. We would then be unable to solve the model analytically or even represent

the equilibria graphically. While we cannot get a closed form solution when the

bond interest rate is endogenous, we can still represent the equilibria graphically

as there is only one state variable. A shortcoming of the OLG assumption is that it

prevents movements in asset prices from feeding back into the wealth of investors,

a channel that can be important in a crisis. We introduce such a feedback e�ect

in the Technical Appendix through a simple extension of the OLG setting, with a

brief discussion in Section 6.3.

3.2 Equilibrium Condition for Equity Price

The maximization of (15) with respect to �t gives the optimal portfolio share,

which reects the expected excess return on equity scaled by the variance of the

equity return:

�t =
EtRK;t+1 �R
vart(RK;t+1)

(17)

Equation (17) does not restrict the portfolio share of equity to be lower than

100 percent. This share can exceed 100 percent when the equity return is not very

risky, or when investors put little weight on risk. In that case the investors are

leveraged, with long positions in equity and short positions in bonds.

Using (17), the market clearing condition (16) becomes:

Et(At+1 +Qt+1 �RQt) =
K

WI

vart(Qt+1 + At+1) (18)

Equation (18) equates the equilibrium expected excess payo� on equity to a risk

premium that depends on the variance of the payo� Qt+1 + At+1. We use it to

solve for the equilibrium asset price Qt as a function of the single state variable St.

3.3 Sunspot Equilibria

First consider the case where m = 0, so that St is a pure sunspot. In that case (18)

can be written in the same form as (1) with �0 = �A=R, �1 = �K=(RWI) and

�2 = 1=R. We again get two equilibria. The �rst is the fundamental equilibrium

where the asset price is constant:

Qt =
�A

R� 1 (19)
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The second is the sunspot equilibrium Qt = ~Q� V S2t where:10

V =
WI

K

R� �2
4�2�2

(20)

The intuition for the sunspot equilibrium is exactly the same as in Section 2.

An interesting point is that the impact of the sunspot on the equity price is

larger when investors have a low risk aversion  or a large wealth WI . As can

be seen from (18), low risk aversion or large wealth reduce the risk premium and

makes it less sensitive to changes in risk. It is precisely because agents respond

less to risk (i.e. are less risk averse) that large self-ful�lling shifts in risk can more

easily ourish. Paradoxically this implies that the asset price is more a�ected by

such self-ful�lling shifts in risk.

3.4 Sunspot-Like Equilibria

Next consider the case where m > 0, so that shocks to St are also fundamental

shocks to the asset payo�. We conjecture that the asset price is linear-quadratic

in St:

Qt = ~Q+ vSt � V S2t (21)

The only slight di�erence with the fundamental shocks to yt in Section 2 is that

the risk is now given by var(Qt+1 + At+1) instead of vart(Qt+1). There are again

two equilibria: a fundamental one and a sunspot-like one.

In the fundamental equilibrium we have V = 0 and v = m�=(R � �), and the
asset price is:

Qt = ~Q+
m �A�

R� �St (22)

Shocks have a bigger impact on the asset price when they are persistent. Asset

price risk is constant.

In the sunspot equilibrium we have:

V =
WI

K

R� �2
4�2�2

(23)

10An additional restriction to make sure that the asset price is always positive is that the

distribution of �t is bounded. In that case St is bounded as well. Since (R � 1) ~Q = �A �
V �2 � (K=WI)V

2!2, a su�cient condition for the asset price to always be positive is that �A is

su�ciently large.
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v = � m �A

1� � (24)

As in Section 2, this sunspot-like equilibrium converges to the pure sunspot equi-

librium as the fundamental shock vanishes to zero (m ! 0). In addition, the

coe�cient on S2t is again the same in the pure sunspot equilibrium (20) as in the

sunspot-like equilibrium (23). St therefore plays a double role of a macro funda-

mental that a�ects asset payo�s and as a sunspot that leads to self-ful�lling risk

shifts.

3.5 Full General Equilibrium

Our analysis so far is not a full general equilibrium approach as we assume that

there is an in�nite supply of the risk-free bond at the rate of return R. In the

remainder of the paper we relax this assumption and explicitly model the bond

market equilibrium.

The bond market clearing condition equates the investors' demand for bonds

to the supply. It is important that the supply of bonds be interest rate elastic.

Otherwise, investors could not reallocate between stocks and bonds in equilibrium.

The equity price would then be entirely pinned down by investors' wealth and

there could be no sunspot or sunspot-like equilibria. There are many ways to

introduce an interest rate elastic supply or demand schedule of bonds, for example

by introducing interest elastic consumption/savings or investment decisions. We

do so by introducing another set of agents, which we call households, who invest

in bonds and a household technology detailed below.

There are overlapping generations of households born with wealth WH . House-

holds invest their endowment in bonds and a household technology, and consume

the proceeds when old. Investing KH;t+1 in the household technology at time t

yields a certain household production of f(KH;t+1) at t + 1. The technology ex-

hibits decreasing returns to scale, f 0(:) > 0 and f 00(:) < 0. Households therefore

face no uncertainty. Households born at time t maximize consumption at time

t+1, which is equal to f(KH;t+1)+Rt+1(WH �KH;t+1), where Rt+1 is the interest

rate on the bond. Consumption is maximized by equalizing the marginal return

on the technology to the bond yield: f 0(KH;t+1) = Rt+1.

For convenience we assume a simple quadratic form for household technology.

11



The capital demand is then linear in the interest rate11: KH;t+1 = � � �Rt+1, and
the demand for bonds by households is:

WH �KH;t+1 = WH � � + �Rt+1 (25)

Equation (25) can be positive, in which case households lend bonds to investors,

or negative, in which case they borrow from investors.

The bond market clearing condition is:

(1� �t)WI +WH � � + �Rt+1 = 0

Using the equity market clearing condition (16), we rewrite this as

QtK + � � �Rt+1 = W (26)

where W = WI +WH is the aggregate initial wealth. (26) gives a linear positive

relationship between the equity price and the interest rate. A higher equity price

raises the supply of equity. Clearing the equity market then requires investors to

shift their portfolio towards equity and reduce their purchase of bonds (or borrow

more from households). Bond market clearing then requires households to lower

their borrowing (or increase their bond purchase), which they are induced to do

through a higher interest rate.12

Using (26), the equity market clearing condition (18) becomes:

Et

 
At+1 +Qt+1 �

� �W
�

Qt �
K

�
Q2t

!
=
K

WI

vart(Qt+1 + At+1) (27)

The equilibrium condition (27) only involves the equity price, which we again

solve with the method of undetermined coe�cients. We now no longer have an

analytical solution because the time-varying interest rate leads to a non-linearity

through the term Q2t on the left hand side. We therefore adopt a numerical ap-

proximation method along the following lines (details are given in Appendix A).

As is standard in the literature, we consider an approximation of the equilibrium

asset price in logs:

qt = ~q + vSt � V S2t (28)

11Speci�cally, we assume that f(KH;t+1) =
�
�KH;t+1 � 0:5K2

H;t+1

�
=�.

12There is a third market clearing condition, for goods, but we can drop it thanks to Walras'

Law.
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We then take a quadratic approximation of Qt and Qt+1 around St = St+1 =

0, and use the result to compute the expectation and variance of Qt+1 + At+1.

We substitute the resulting expressions into (27). We �nally take a quadratic

approximation around St = 0, which gives a linear-quadratic expression in St:

Z0 + Z1St + Z2S
2
t = 0 (29)

where Z0, Z1, and Z2 are functions of ~Q = e
~q; v; and V . We solve for the value of

these parameters by setting Z0 = 0, Z1 = 0, and Z2 = 0.

While we are solving for three parameters, ~Q, v and V , we can represent the

equilibria graphically in a ( ~Q, v) space. De�ne ~V = ~QV . In Appendix A we show

that Z0 = 0 implies
~V = �1 + �2v

2 (30)

where �1 and �2 are functions of ~Q. Substituting this into the expressions associ-

ated with Z1 = 0 and Z2 = 0 we obtain

h1 + h2v + h3v
2 + h4v

3 = 0 (31)

g1 + g2v + g3v
2 + g4v

3 + g5v
4 = 0 (32)

where hi and gi are functions of ~Q.

We solve numerically for the roots of the third and fourth order polynomials

(31) and (32). The polynomials represent two schedules that map a given ~Q into

v, with possibly multiple solutions. We plot these two schedules in a ( ~Q, v) space

with each intersection representing an equilibrium combination of ~Q and v. ~V ,

and therefore V , then follow from (30).

For a given process for St a typical parameterization gives 4 equilibria. This is

illustrated in Figures 1 and 2 for respectively m = 0 and m = 1. Schedule (31) is

represented by the solid line and (32) by the broken line. When m = 0 the variable

St is a pure sunspot. Figure 1 shows that there is one fundamental equilibrium

where v = V = 0. The other three equilibria are all sunspot equilibria. The

fact that for a given process for St there are now three sunspot equilibria rather

than the single sunspot equilibrium we found before is a result of the non-linearity

generated by the time-varying interest rate.

In Figure 2, where m = 1, St is a fundamental that drives the asset payo�s.

There are again 4 equilibria. Equilibrium 1 is a pure fundamental equilibrium.
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As we let m ! 0, it converges to Equilibrium 1 in Figure 1 where v = V =

0. The other three equilibria are all sunspot-like equilibria. As we let m !
0, they converge to the corresponding sunspot equilibria in Figure 1. Figure 3

illustrates the convergence of the sunspot-like Equilibrium 2 of Figure 2 to the

sunspot Equilibrium 2 of Figure 1 when m goes to zero. It is remarkable that

even when we get far away from m = 0, ~Q, v and V change very little, especially

in comparison to the near-zero levels of v and V in the fundamental equilibrium.

This suggests that even when the fundamental role of St is important, the impact

of St on the asset price is dominated by self-ful�lling shifts in risk.

4 Risk Panics

4.1 Switching across states

Risk panics can happen in equilibria that allow for a switch between low and high

risk states. In the previous section the economy was either in a fundamental or

sunspot-like equilibrium. We now consider an equilibrium that allows for switches

between a low risk state (indexed by 1, akin to the fundamental equilibrium) and

a high risk state (indexed by 2, akin to the sunspot equilibrium). Switching occurs

through an exogenous Markov process. The probability that we remain in a low

risk state next period when we are in a low risk state today is p1 > 0:5. Similarly,

the probability that we remain in a high risk state next period when we are in a

high risk state today is p2 > 0:5.

Equilibria 1 and 2 in Figure 2 are the points to which the low and high risk

states converge, respectively, in the limit where switching is not possible (p1 =

p2 ! 1). When switching is possible, the low risk state becomes riskier than

the pure fundamental equilibrium 1 in Figure 2. This is because there is now a

possibility of switching to the high risk state, a switch that implies a signi�cant

drop in the equity price. Even when the probability of switching is low, the main

source of uncertainty in the low risk state becomes the possibility of a jump to

the high risk state rather than the pure fundamental uncertainty in Equilibrium 1

of Figure 2.13 Agents take the possibility of switching into account when forming

13This is similar to what is found in the \rare disaster" literature (e.g., Barro, 2006, Gabaix,

2009) where a small probability of a large disaster a�ects what happens in the no disaster periods.
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their expectations.

We conjecture that the log equity price in state i is

qi;t = ~qi + viSt � ViS2t (33)

As there are two such equations we solve for 6 unknown parameters (3 for each

state). This is done by imposing equity market equilibrium as before, but sepa-

rately for both states. We compute the expectation and variance of Qt+1 taking

into account that a switch to a di�erent state is possible. The algebra is presented

in Appendix B.

As an illustration, Figure 4 shows the values of ~Qi, vi and Vi in the low and

high risk states for the case where p1 = p2. As pointed out above, the two states

correspond exactly to Equilibria 1 and 2 of Figure 2 when p1 = p2 = 1. Switching

equilibria only exist when the probability of remaining in the same state is high

enough. But when p1 = p2 is higher than this cuto� (su�ciently low probability

of switching), the di�erence between the two states quickly becomes very big. A

lower probability of switching particularly reduces risk in the low risk state (lower

values of v and V ).

A risk panic is a switch from the low to the high risk state. Apart from the spike

in risk, the panic also entails an increase in the volatility of risk, a sharp drop in

the equity price and a shift out of equity (i.e. deleveraging when investors initially

hold leveraged portfolios). We graphically illustrate these e�ects in Section 6 in

an application to the 2008 �nancial crisis.

4.2 Panics and fundamentals

It is important to be clear both about the role that fundamentals do and do not play

in a panic. First, a panic is not caused by a change in fundamentals. It happens

for a given level of St. Second, the magnitude of the panic is larger the weaker the

fundamental (the more negative St). Finally, once a panic occurs the asset price

becomes much more sensitive to subsequent uctuations in the fundamental. The

market becomes on edge regarding any news about St.

Consider the �rst point: a panic does not result from a change in the funda-

mental. As can be seen from Figure 4, during the switch to the high risk state

the coe�cients v and V increase, generally by a large magnitude. This a�ects risk
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and the asset price for a given level of St. What changes is not St itself but rather

the role that it plays. As we switch to the high risk state, St suddenly becomes a

key variable around which agents coordinate their perceptions of risk. There is a

sudden self-ful�lling increase in risk with the variable St being the focal point for

the change in risk perceptions.14

Notice that a risk panic is therefore conceptually distinct from �nancial acceler-

ator models where the impact of shocks is magni�ed through �nancial constraints.

While small shocks have a large e�ect in such models, the mechanism at work is

a purely fundamental mechanism. Our framework instead puts the coordination

of expectations center stage. During the panic asset prices and risk move sharply

even though the state variable does not change.

Next consider the second point: the magnitude of the panic is larger the weaker

the fundamental. To illustrate this point, consider the change in the equity price

from the low to the high risk state. From (33) it follows that the change in the log

equity price is

q2;t � q1;t = ~q2 � ~q1 + (v2 � v1)St � (V2 � V1)S2t < 0

Since v2 � v1 and V2 � V1 are both positive (see Figure 4), the drop in the equity
price is larger the more negative is St (i.e. the weaker the fundamental). Consider

for instance that p1 = p2 = 0:65. In that case a panic lowers the equity price by

only 13% when St = 0, but by 65% when St is two standard deviations below its

unconditional mean of 0.

In this light a large risk panic can also be viewed as a delayed ampli�cation ef-

fect. Consider a deterioration of the fundamental (a drop in St) when the economy

is in the low risk state. The shock lowers the equity price through the standard

fundamental mechanism, but this impact is relatively small. The delayed am-

pli�cation e�ect occurs if at some later date there is a switch to the high risk

equilibrium. At that point, the sunspot role of St suddenly surges. The impact of

the panic on the asset price is much larger than the fundamental impact of St in

the �rst stage. We will further illustrate this point in Section 6 in the context of

the recent �nancial crisis.

14Even in the low risk state St plays to some extent a sunspot role if p1 < 1. But this role

is generally much stronger in the high risk state. In the low-risk state this role only reects the

possibility of switching to the high risk state.
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Finally consider the last role of the fundamental in a panic: once a panic

occurs the asset price becomes much more sensitive to subsequent uctuations

in the fundamental. Once we switch to the high risk state, the fundamental St

becomes the focal point around which investors coordinate their beliefs about

risk. This causes them to react strongly to any change in the variable. A further

deterioration can lead to a signi�cant further drop in the equity price. Conversely,

an improvement in the fundamental becomes a signi�cant stabilizing force. In the

example above with p1 = p2 = 0:65, the equity price drops from 100 to 35 during a

panic when the fundamental is two standard deviations below its mean. But when

the fundamental reverts to it mean, the equity price goes all the way back to 87,

even though we are still in the high risk state.

5 Financial Shocks

We now slightly modify our framework to show that the mechanism of self-ful�lling

risk that we stress in this paper could explain various aspects of the recent �nancial

crisis. We focus on �nancial shocks that redistribute wealth between households

and investors. These shocks �t more closely the storyline of the 2007-2008 �nancial

crisis where �nancial institutions experienced large negative shocks to their wealth

(net worth) connected to mortgage market losses. For convenience, we abstract

from aggregate shocks in our benchmark analysis, but we show that our results

are robust to allowing for aggregate losses. Financial shocks that only a�ect the

distribution of wealth impact the relative demand for bonds and equity as only

investors are present in the equity market.

In addition to their closer link to the �nancial crisis, �nancial shocks are in-

teresting as they give rise to another type of multiplicity through a circular rela-

tionship between risk and market liquidity. This type of multiplicity, that we call

static multiplicity, has already been identi�ed in the literature, although perhaps

not in the context of a simple portfolio choice model. It is however distinct from

the dynamic multiplicity that we identi�ed in previous sections.

We make two changes relative to the model in Section 3.5. First, we assume

that asset payo� shocks have no persistence (� = 0). This simpli�es the analysis

as the wealth of investors is then the only state variable. Second, we introduce
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shocks to the wealth of investors as follows:

WI;t = e
�m�t�0:5m2�2t �WI (34)

where

�t+1 = ���t + �
�
t+1 (35)

and ��t+1 is a shock with mean zero and variance �
2
� . Financial shocks only re-

distribute wealth and leave aggregate wealth unchanged: WI;t +WH;t = W . We

assume that �nancial shocks ��t+1 and asset payo�s At+1 are uncorrelated. Equation

(34) ensures that investors' wealth is linear in �t up to a quadratic approximation:

WI;t = �WI(1�m�t). A rise in �t implies a drop in the relative wealth of investors.
The parameter m allows us to vary the fundamental impact of wealth shocks. If

m = 0, �t does not a�ect wealth and becomes a pure sunspot.

The equity market clearing condition remains the same as (18), but now with

time-varying wealth of investors:

Et(At+1 +Qt+1 �RQt) =
K

WI;t

vart(Qt+1 + At+1) (36)

The model is solved the same way as in Section 3.5, with a quadratic approximation

of the market clearing condition around �t = 0. The details can be found in the

Technical Appendix. The asset price is again a linear-quadratic function of the

state variable:

qt = ~q � v�t � V �2t
We now examine more closely the two types of multiplicity that arise with �nancial

shocks.

5.1 Static Multiplicity: Interaction Between Risk and Liq-

uidity

The static multiplicity generated by �nancial shocks is linked to the concept of

market liquidity. It is most clearly illustrated by assuming that the state variable

�t shows no persistence (�� = 0) so the model essentially becomes a static setting.

Risk is then constant as the current state variable has no e�ect on the future asset

price.
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Market liquidity is related to the price impact of asset demand shocks. Liquidity

is low when shocks have a large impact on either the price or the expected excess

payo� of the asset. The two are related as a larger change in the equilibrium

expected excess payo� requires a larger adjustment of the current price. For our

purposes it is convenient to de�ne liquidity as the impact of wealth shifts on the

expected excess payo�:15

@Et(At+1 +Qt+1 �Rt+1Qt)
@WI;t

(37)

A reduction in the wealth of investors (a higher �t) lowers the demand for equity.

The expected excess payo� on equity then needs to increase to bring investors

back into the market. The more it increases, the more negative (37) is and the

lower liquidity. Di�erentiating the equity market clearing condition (36), liquidity

is equal to:

�Kvart(Qt+1 + At+1)
W 2
I;t

(38)

Liquidity is low ((38) is more negative) when risk is high or wealth is low. High

risk implies that equity is unattractive and investors take a small position in the

equity market. With a limited exposure to the equity market, investors respond

less to changes in the expected excess payo� on equity. Larger changes in the

expected excess payo� are then necessary to clear the equity market, so liquidity

is low. Similarly, lower wealth means that less money is on the line in the equity

market. Larger changes in the expected excess payo� are then needed to clear the

market.16

The model implies a circular relationship between risk and liquidity. High risk

implies that investors hold a small portfolio share in equity. The equity market is

then thin and liquidity low. Low liquidity in turn implies a large price impact of

asset demand shocks, so that risk is indeed high. This circular relationship leads to

two equilibria for �� = 0. This is illustrated in Figure 5, which represents schedules

(31) and (32). Apart from wealth shock parameters, the parameterization is the

15See Amihud et al. (2005) and Vayanos and Wang (2009) for surveys of various liquidity

measures.
16When �� > 0 there will be an extra term in (38) associated with time-varying risk. It is

equal to [K=WI;t][@vart(Qt+1 + At+1)=@WI;t]. When a drop in wealth raises risk, it requires

an even larger increase in the expected excess payo� to clear the market.
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same as used in Figures 1 and 2. Equilibrium 1 is the low risk equilibrium, where

v and V are close to zero, while Equilibrium 2 is the high risk equilibrium.

The static multiplicity is closely related to multiple equilibria in limited par-

ticipation models such as Pagano (1989), Allen and Gale (1994) and Jeanne and

Rose (2002).17 In these models there are relatively few agents in the market in the

high risk equilibrium. Liquidity is then low and risk high. The opposite is the case

in the low risk equilibrium. Even though we do not allow agents to enter or exit

the market, investors' exposure to equity is lower when risk is high.

While the static multiplicity has been recognized in the literature, its appeal is

limited for two reasons. First, risk is constant within each equilibrium (low- and

high risk), which is empirically not satisfactory. Second, the static multiplicity

arises only for �nancial shocks, but not for shocks on asset payo�s for instance.

With transitory asset payo� shocks, the only equilibrium is the fundamental one

where the asset price and risk are constant.

5.2 Dynamic Multiplicity: Sunspot and Sunspot-Like Equi-

libria

The dynamic multiplicity that arises when �� > 0 is the focus of the paper. It is

illustrated in Figure 6, which uses the same parameterization as Figure 5 except

that we set �� = 0:4. Panel A shows results for m = 2 and Panel B for m = 0.

In both panels Equilibrium 1 is the fundamental equilibrium. The other equilibria

in Panel A are all sunspot-like equilibria, which converge to the corresponding

pure sunspot equilibria in Panel B when m ! 0. These equilibria again exhibit

self-ful�lling shifts in risk, which are now coordinated around the variable �t. The

dynamic multiplicity can thus generate time-varying risk.

Even though the fundamental shock is now di�erent from earlier sections, the

sunspot-like equilibria in Panel A are quite similar to those in Figure 2 for the

asset payo� shocks. The reason for this similarity is the dominance of the sunspot

aspect of the variable. Any macro variable can play this role, irrespective of the

particular role that is plays as a fundamental within the model.

17There are other examples of static multiplicity with di�erent levels of risk in other contexts.

See for example McCa�erty and Driskill (1980) or Bacchetta and van Wincoop (2006).
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6 Application to 2007-2008 Financial Crisis

This section uses our setting to shed light on the 2007-2008 �nancial crisis. After

presenting some basic �nancial data, we simulate the model and show that it

generates an outcome qualitatively similar to what happened during the crisis. It

should be emphasized that there are many important aspects of the recent crisis

that are well beyond the scope of this paper. To the extent that our model is

applicable in shedding light on the crisis, it is primarily in the context of the

self-ful�lling shifts in risk perceptions that are the focus of this paper. We take

the accumulating �nancial losses of leveraged investors as given (reected in the

�nancial shocks) and focus on the implications for the dynamics of risk, leverage,

liquidity and asset prices.

6.1 Dynamics of Risk, Leverage, Liquidity, and Asset Prices

The crisis came in the form of a one-two punch. The �rst part is the relatively

calm period from the beginning of 2007 until September 2008. The second part is

the �nancial panic that started in September 2008. The panic peaked by the end

of 2008 and it took several quarters for the situation to return to a more normal

state. Using data for the United States, we focus on the following variables: (1)

stock prices, (2) T-bill rate, (3) equity price risk, (4) volatility of risk, (5) net

worth of leveraged institutions, (6) leverage, and (7) market liquidity. Stock prices

are measured by the DJ U.S. total stock market index. Risk is measured as the

CBOE SPX volatility VIX index. Volatility of risk is the standard deviation of

the VIX index over the past 30 days. Net worth and leverage are based on U.S.

brokers and dealers as reported by the Federal Reserve Flow of Funds. Market

liquidity is di�cult to measure in the data as it is a theoretical concept that does

not have a straightforward empirical counterpart. We construct a measure similar

to Amihud (2002) which, of di�erent market liquidity measures, correlates the

most with estimates of price impact computed using very high-frequency data (see

Goyenko et al., 2009). Starting with individual stocks, we compute the average

absolute daily stock price change over a month per dollar of daily trading volume.

This is then averaged over 100 stocks from the S&P index.18 A high value of our

18We are grateful to Giorgio Valente for providing us with the updated measure. Holding

period returns and volumes are from Reuters Datastream. To deal with stationarity, in the spirit
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measure indicates low market liquidity. It is therefore a measure of illiquidity.

The dynamics of the variables during the crisis are illustrated in Figure 7. The

vertical line represents the collapse of Lehman Brothers on September 15, 2008,

which we consider to be the start of the �nancial panic. After a modest decline

in stock prices and a small increase in risk during the tranquil period of the crisis,

stock prices suddenly crashed and risk spiked in September 2008. The volatility

of risk also shot up, while it showed no trend in the �rst stage. A ight to quality

lowered the T-bill rate to near zero. Net worth gradually declined after mid 2007

until the third quarter of 2008, to quickly recover after the crisis. Financial leverage

�rst rose signi�cantly during the tranquil period, and then fell sharply during the

panic stage. Finally, liquidity fell modestly during the tranquil part of the crisis,

followed by a sharp drop in liquidity during the panic and then a return back to

normal by mid-2009.

6.2 Model Simulation

We illustrate the dynamics of the variables in the model, and relate them to the

recent crisis, using the two-state switching equilibrium as described in Section 4.

The parameters are shown at the bottom of Figure 8. The main results are robust

to the precise parameter values chosen, as discussed below. We set p1 = 0:95 and

p2 = 0:7. This ensures that the high risk state occurs much less frequently than

the low risk state, as the economy spends only 14% of the time in the high risk

state. Panics of a large magnitude are even less frequent because they require not

only a switch to the high risk state but also a very weak fundamental.

The parameterization is chosen to make sure that investors are substantially

leveraged. Investors' initial equity holdings are four times their net worth (wealth),

and are �nanced by borrowing from households through bonds. High leverage is

characteristic of most �nancial institutions. We therefore also refer to the investors

as leveraged �nancial institutions.19

of Acharya and Pedersen (2005) the illiquidity measure is multiplied by the ratio of the aggregate

volume for all stocks in the sample at the end of a month to the same aggregate volume at the

beginning of the sample.
19While leverage is less than seen in the data for brokers and dealers, our investors should be

seen as an aggregate of all investors. A possible re�nement is to consider two sets of investors with

di�erent degrees risk aversion. A �rst group of \long" investors with a relatively high risk aversion
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We simulate the model over 16 periods, which we interpret as quarters. We

do no make any attempt to match the process of �nancial losses in the data, but

instead illustrate the drivers of the model through a simple step function for �t,

along with a simple switching between low and high risk states. The dynamics of

�tare illustrated through the wealth of investors, which follows the same path, in

the �rst chart of Figure 8. The economy is initially in a low risk state with �t at

its unconditional mean of zero. �t rises from 0 to 0.3 in period 2, which we can

think of as Q1 2007 when the losses of leveraged institutions on mortgage securities

became apparent, leading to a reduction of their the wealth. This situation lasts

until period 8, which we can think of as Q3 2008, where the economy switches to

the high risk state. It stays in that situation until period 11 (Q2 2009) when �t falls

back to zero thanks, for example, to a recapitalization of leveraged institutions.

The economy reverts back to the low risk state in period 14 (Q1 2010).

These dates are not meant to match the exact length of the panic or the period

of �nancial weakness of leveraged �nancial institutions. Our focus is instead to

highlight the separate roles of the �nancial health of leveraged institutions and

the speci�c risk state. This is done by considering all possible combinations of

�nancial health (normal versus bad) and the state (low risk, high risk) in order to

evaluate the speci�c contribution of both elements.

The simulation is presented in Figure 8. Periods during which �t changes are

marked by vertical dotted lines, while the shaded area denotes the time spent in the

high risk state. The wealth of investors follows the overall pattern seen in the data

for brokers and dealers in Figure 7, although the deterioration of the net worth

of �nancial institutions was obviously more gradual in the data. The other panels

show the paths of the equity price, risk, the volatility of risk, interest rate, leverage

and illiquidity. The stock price (normalized at 100 initially) and gross interest rate

are Qt and Rt+1. Risk is measured as the standard deviation of Qt+1=Qt, taking

into account the possibility of switching to another state. The volatility of risk is

would not be leveraged, while the second group with low risk aversion would be the \leveraged"

investors. This would connect somewhat closer to reality, but would not fundamentally change

any of the results. The basic market clearing equation (18) would be similar with two groups

of investors. The only di�erence is that the ratio WI;t= would be replaced by a risk-aversion

weighted wealth (WL;t=L+WNL;t=NL), where the subscripts L and NL stand for respectively

leveraged and non-leveraged investors.
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the standard deviation at time t of our risk measure at t+ 1.20 Leverage is equal

to the share of equity in investors' portfolio, �t. Finally, illiquidity is measured

as the absolute value of the derivative of the log equity price with respect to �t.

This connects well to the Amihud measure used in the data, which is also meant

to capture the price impact of shocks. Results are very similar when illiquidity is

de�ned as the impact of �t on the expected excess payo�, as in Section 5.1.

During the tranquil part of the crisis the shift in wealth away from leveraged

�nancial institutions reduces demand for equity and therefore its price. It also

leads to a decline in liquidity (see Section 5.1), which increases risk and reduces

the equity price further. Nonetheless Figure 8 shows that these e�ects are all quite

modest. The only large change is leverage, which almost doubles. While the small

increase in risk reduces leverage, this is more than o�set by an increase in the

expected excess return due to the lower equity price.21

The second stage of the crisis, when the economy shifts into the high-risk stage,

is characterized by a surge in risk and its volatility. This prompts a sharp reduction

in the equity price and leverage. The drop in leverage in turn dries up liquidity in

the equity market. The switch to bonds leads to a sharp drop in the interest rate.

An important message from Figure 8 is that a large surge in risk requires two

ingredients, either one of which alone is not su�cient. First, there needs to be a self-

ful�lling risk panic (switch to the high risk state). Second, the fundamental around

which the market perceptions of risk coalesce (net worth of leveraged institutions)

must be weak. A deterioration of the macro fundamental alone is not enough

to generate a surge in risk. Even though the net worth of leveraged institutions

drops by more than 50% during the �rst stage of the crisis, risk remains relatively

modest. A switch to the high risk state by itself is not enough either. Risk is

restored slightly below its pre-panic level in period 11, when we are still in the

high risk state but the leveraged institutions are recapitalized.

While the simple exercise we have conducted here is not meant to match precise

data, the overall pattern in these variables is broadly in line with the data in Figure

20In computing the volatility of risk, we assume that we remain in the same state the next

period. This makes it more consistent with the data, where it is measured as the volatility of

risk over the past 30 days, which usually captures volatility within the same state.
21The model does not account for the drop in the interest rate prior to the panic as that is

largely related to monetary policy.
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7. During the pre-panic state of the crisis the impact on the equity price, risk and

liquidity is quite modest in both the data and the model. The substantial increase

in �nancial leverage during this period is also consistent with that in the model.

Then, during the switch to the panic state the model accounts for the sharp drop

in the equity price, �nancial leverage, and market liquidity and the sharp increase

in risk.

The volatility of risk also behaves similarly to that in the data. It surges

together with risk during the panic and later on declines with the fall in risk itself.

This joint behavior of risk and the volatility of risk is a critical element of the

model, as discussed in Section 2.1. Risk spikes in the model only because future

risk becomes more uncertain.

6.3 Sensitivity Analysis

Self-ful�lling shifts in risk occur as long as the asset price is negatively a�ected

by risk about the future asset price. One might therefore expect the �ndings in

the simulation above to apply much more broadly than for the particular model

assumptions and parameterization underlying Figure 8. We con�rm this through

a variety of sensitivity analysis that we summarize here, with the details given in

the Technical Appendix.

We �rst check that the results in the simulation exercise presented in Figure

8 are robust to alternative parameter values. This is done by halving and dou-

bling most parameters. The results remain qualitatively intact for all alternative

parametrizations. In particular, a risk panic leads to a sharp increase in risk and

the volatility of risk, and a large decrease in the equity price, market liquidity and

leverage. The precise magnitudes are certainly sensitive to parameterization. In

particular, the size of the risk panic is larger the smaller �, �, , and m and the

larger � �W .
Second, we assess how the speci�cs of the model a�ect the results. We have

already seen that the nature of the fundamental around which risk panics are

coordinated is not critical to the results, as shocks to asset payo�s also lead to

multiple equilibria and risk panics. Another modeling aspect is the assumption

that �nancial shocks redistribute wealth between investors and households, with

no aggregate loss. We consider an alternative where the wealth loss for investors
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is not o�set by a gain for households and �nd that the results remain very similar.

Lastly, we abstracted from any feedback of the asset price to wealth. We include

this aspect in our OLG setting by assuming that some of the endowment when

born consists of trees. This ampli�es the risk panic. For example, when 29% of

the wealth is subject to asset price shocks (in the low risk state at �t = 0), we �nd

that the feedback e�ect from the asset price to wealth increases the magnitude of

risk panics, with risk spiking from 26% during the tranquil part of the crisis all

the way to 129% at the height of the panic.

Finally, we check the robustness with respect to the approximation in the so-

lution method. This is done by considering a cubic approximation of the market

clearing condition instead of a quadratic one. The simulation results are not sub-

stantially a�ected, providing con�dence that the precision of the approximation

method is not critical to the results.

7 Conclusion

Motivated by several recent crises that have shown very large spikes in risk without

correspondingly large shifts in fundamentals, we develop a theory for self-ful�lling

shifts in risk. These shifts can occur when the asset price depends negatively on

the perceived risk of the future asset price. Risk associated with tomorrow's asset

price then depends on uncertainty about risk tomorrow. This dynamic mapping

of risk into itself gives rise to the possibility of self-ful�lling shifts in risk.

Although a risk panic occurs without any change in fundamentals, it has a

larger impact the weaker the macro fundamental on which agents coordinate their

perceptions of risk at the time of the panic. The sharp increase in risk and ac-

companying volatility of risk in turn give rise to a large drop in the asset price,

decreased leverage and reduced market liquidity. The model can generate a two-

stage crisis, where a deteriorating fundamental at �rst generates a modest impact

on risk, asset prices and market liquidity, followed later on by a panic stage with

much larger movements as the weak macro fundamental suddenly becomes the

focal point for a self-ful�lling spike in risk. This matches the developments during

the 2007-2008 �nancial crisis.

Our �ndings open up several directions for future research. First, the equilibria

that we have identi�ed can be found in any model where the actions of agents
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depend on the risk of an endogenous variable. While we have focused on asset

markets, the same may be the case for example in goods and labor markets. The

issue is also not limited to prices. We could replace Q with any other variable that

depends on risk associated with its future level. This could for example be output.

It is well-known that reduced uncertainty about the future economic environment

is good for business today (e.g. see Bloom, 2009).

Another direction for future research is to consider multiple assets. In our en-

tire analysis there is only one risky asset. This should therefore be interpreted

as the market portfolio of risky assets, which could be a country-wide or even a

global equity index. A natural question is what the implications are for stocks of

individual �rms. Closely related, in an open economy context one would like to

know whether all countries will be a�ected by a risk panic or whether it could be

contained to a limited number of countries. This question relates to the widely dis-

cussed issue of �nancial contagion and is analyzed in Bacchetta and van Wincoop

(2010).

A �nal direction for further research pertains to �nancial crises. We have kept

the model as simple as possible to focus on the role of self-ful�lling risk shifts. A

natural question is how this interacts with other elements that we have ignored

for convenience. A non-exhaustive list includes �nancial constraints on leveraged

institutions (borrowing constraints, value at risk constraints), the possibility of

default and associated bank runs, and the interaction between the �nancial crisis

and real economic activity. Moreover, a crucial issue is the policy recommendation

that arises from our analysis. In Bacchetta et al. (2010) we examine the role of

leveraged institutions in the context of our model. We �nd that, despite their

stabilizing role in normal times, less risk averse leveraged institutions increase the

magnitude of risk panics. We conclude that a policy making �nancial institutions

more risk averse, or more prudent, could substantially reduce volatility.
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Appendix

A Numerical Solution of Model in Section 3.5

In this Appendix we describe the solution of the equilibria in the version of the

model in Section 3.5. We take a quadratic approximation of the market clearing

condition around St = 0. Before doing so, we �rst need to compute the expectation

and variance of Qt+1 + At+1. From the conjecture (28) we have

Qt = ~QevSt�V S
2
t (39)

where ~Q = e~q. A quadratic approximation around St = 0 gives

Qt = ~Q(1 + vSt + (�V + 0:5v2)S2t ) (40)

For consistency we now also model the asset payo� in logs: ln(At) = ln( �A)+mSt�
0:5m2S2t . This speci�cation implies that a quadratic approximation of At around

St = 0 is At = �A(1+mSt). Using these quadratic approximations of Qt and At at

t+ 1 and then substituting St+1 = �St + �t+1 gives

Et(Qt+1 + At+1) = ~Q
�
1 + v�St + (�V + 0:5v2)(�2S2t + �2)

�
+

�A+m �A�St (41)

var(Qt+1 + At+1) = ~Q2
�
v + (�V + 0:5v2)2�St

�2
�2 +

m2 �A2�2 + 2 ~Q �A
�
v + (�V + 0:5v2)2�St

�
�2m (42)

Here we have simpli�ed slightly by adopting approximation �2t+1 = �
2 or var(�2t+1) =

0. This holds exactly in a simple distribution where �t can only take on the val-

ues �� and +�. More generally, it is frequently adopted as a continuous time
approximation. Under a normal distribution the variance of �2t+1 is 2�

4, which is

a small fourth-order term. Dropping this small term makes it easier to represent

the equilibria graphically.

Substituting these results into the market clearing condition (27) and taking a

quadratic approximation around St = 0 gives an equation of the form (29). Setting

the coe�cients Z0, Z1 and Z2 equal to zero, we obtain respectively

�W

 
�A+ ~Q+ ~Q(�V + 0:5v2)�2 � 1

�
(� �W ) ~Q� 1

�
K ~Q2

!
=

Km2 �A2�2 + ~Q2Kv2�2 +K2 ~Q �Av�2m (43)

28



�W ~Qv(�� 1
�
(� �W )� 1

�
2K ~Q) +m �W �A� = 4K ~Q2v(�V + 0:5v2)��2 +

4K ~Q �A(�V + 0:5v2)��2m (44)

�W

"
(�V + 0:5v2)�2 � 1

�
(� �W )(�V + 0:5v2)� 1

�
2K ~Q(�V + v2)

#
=

4K ~Q(�V + 0:5v2)2�2�2 (45)

Here we de�ne �W = WI=.

The strategy is as follows. For a given value of ~Q we �rst solve ~QV from (43)

as a quadratic function of v. We substitute the result in (44) and (45). This

gives respectively a third and fourth order polynomial in v that needs to be solved

numerically. This leads to two schedules that map ~Q into v (possibly multiple

values of v) that can be graphed. Equilibria are the points where these schedules

intersect.

From (43) we can solve

~QV = �1 + �2v + �3v
2 (46)

where

�1 =
1

�2

 
�A+ ~Q� 1

�
(� �W ) ~Q� 1

�
K ~Q2

!
� K

�A2m2

�W
(47)

�2 = �
2K ~Q �Am

�W
(48)

�3 = 0:5 ~Q�
~Q2K
�W

(49)

From (44) we have

�1 + �2v + �3v
2 + �4v

3 + �5[ ~QV ] + �6[ ~QV ]v = 0 (50)

where

�1 = �W �A�m (51)

�2 = �W ~Q

 
�� 1

�
(� �W )� 1

�
2 ~QK

!
(52)

�3 = �2K ~Q �A��2m (53)

�4 = �2K ~Q2��2 (54)

�5 = 4K �A��2m (55)

�6 = 4K ~Q��2 (56)
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Finally, (45) can be written as

�1v + �2v
2 + �3v

4 + �4[ ~QV ] + �5[ ~QV ]
2 + �6[ ~QV ]v

2 = 0 (57)

where

�1 = 0 (58)

�2 = 0:5 �W ~Q�2 � 1
�
0:5 �W ~Q(� �W )� 1

�
2 �WK ~Q2 (59)

�3 = �K ~Q2�2�2 (60)

�4 = � �W
 
�2 � 1

�
(� �W )� 1

�
2 ~QK

!
(61)

�5 = �4K�2�2 (62)

�6 = 4K ~Q�2�2 (63)

Substituting (46) into (50), we have

h1 + h2v + h3v
2 + h4v

3 = 0 (64)

where

h1 = �1 + �5�1 (65)

h2 = �2 + �6�1 + �5�2 (66)

h3 = �3 + �5�3 + �6�2 (67)

h4 = �4 + �6�3 (68)

Substituting (46) into (57), we have

g1 + g2v + g3v
2 + g4v

3 + g5v
4 = 0 (69)

where

g1 = �4�1 + �5�
2
1 (70)

g2 = �1 + �4�2 + 2�5�1�2 (71)

g3 = �2 + �4�3 + 2�5�1�3 + �6�1 + �5�
2
2 (72)

g4 = 2�5�2�3 + �6�2 (73)

g5 = �3 + �5�
2
3 + �6�3 (74)
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Equations (64) and (69) are third and fourth order polynomials that we solve

numerically. The solutions map ~Q into v. There may be multiple solutions (mul-

tiple v for a given ~Q). We then plot these two schedules in a space with v on the

vertical axis and ~Q on the horizontal axis, as in Figures 1-2. There is an equi-

librium when the two schedules intersect. The precise equilibria can be found by

solving (43)-(45) numerically in Gauss as a �xed point problem in v, V and ~Q.

We choose starting values that are close to the equilibria found through visual in-

spection of where the two schedules intersect. Visual inspection gives approximate

values for ~Q and v. The corresponding value for V follows from (46).

B Solving the Switching Equilibria

We now consider the equilibria in Section 4 of the paper where we allow for a switch

between a low and high risk state. p1 (p2) is the probability that next period we

will be in the low (high) risk state when this period we are in the low (high) risk

state. The log equity prices in the low and high risk states are

qlow riskt = ~q1 + v1St � V1S2t (75)

qhigh riskt = ~q2 + v2St � V2S2t (76)

Assume that currently we are in the low risk state at time t. Analogous to (41),

the expectation of Qt+1+At+1, conditional on being in a low risk state in t+1, is

Et+1(Qt+1 + At+1jt+ 1 is low) = a1;low + a2;lowSt + a3;lowS2t
where a1;low = ~Q1(1 + !1�

2) + �A, a2;low = ~Q1v1� + m �A�, a3;low = ~Q1!1�
2 and

!1 = �V1 + 0:5v21. Similarly, the expectation of Qt+1 + At+1 conditional on being
in the high risk state at t+ 1 is

Et+1(Qt+1 + At+1jt+ 1 is high) = a1;high + a2;highSt + a3;highS2t
where a1;high = ~Q2(1 + !2�

2) + �A, a2;high = ~Q2v2� +m �A�, a3;high = ~Q2!2�
2 and

!2 = �V2 + 0:5v22.
The expectation of Qt+1 + At+1 is then

Et(Qt+1 + At+1)

= p1Et+1(Qt+1 + At+1jt+ 1 is low) + (1� p1)Et+1(Qt+1 + At+1jt+ 1 is high)
= d1;low + d2;lowSt + d3;lowS

2
t (77)
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where di;low = p1ai;low + (1� p1)ai;high, i = 1; 2; 3.
The variance of Qt+1 + At+1 is

var(Qt+1 + At+1) = Et(Qt+1 + At+1)
2 � (Et(Qt+1 + At+1))2 (78)

Dropping terms in St that are third and higher order, (77) gives

(Et(Qt+1 + At+1))
2 = d21;low + 2d1;lowd2;lowSt + (d

2
2;low + 2d1;lowd3;low)S

2
t (79)

Next consider Et(Qt+1 + At+1)
2. Conditional on being in a low risk state at

t+ 1, we have

Qt+1 + At+1 = a1;low + a2;lowSt + a3;lowS
2
t + a4;low�t+1 (80)

where a4;low = ~Q1(v1 + !12�St) +m �A. Using the de�nition of a4;low, we then have

Et((Qt+1 + At+1)
2jt+ 1 is low) = b1;low + b2St;low + b3S2t;low (81)

where b1;low = a
2
1;low+(

~Q1v1+m �A)
2�2, b2;low = 2a1;lowa2;low+4 ~Q1( ~Q1v1+m �A)!1��

2,

and b3;low = a
2
2;low + 2a1;lowa3;low + 4 ~Q

2
1!

2
1�
2�2. Similarly, conditional on being in a

high risk state at t+ 1 we have

Et((Qt+1 + At+1)
2jt+ 1 is high) = b1;high + b2;highSt + b3;highS2t (82)

Here bi;high (i = 1; 2; 3) is de�ned analogously to bi;low with subscripts low replaced

by high and subscripts 1 for ~Q, v and ! replaced by 2. This implies that in the

low risk state at t:

Et(Qt+1 + At+1)
2 = c1;low + c2;lowSt + c3;lowS

2
t (83)

where ci;low = p1bi;low + (1� p1)bi;high, i = 1; 2; 3.
It follows that

var(Qt+1 + At+1) =
�
c1;low � d21;low

�
+ (c2;low � 2d1;lowd2;low)St

+
�
c3;low � d22;low � 2d1;lowd3;low

�
S2t (84)

Finally, a quadratic approximation around St = 0 of QtRt+1 gives

QtRt+1 = e1;low + e2;lowSt + e3;lowS
2
t (85)
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where e1;low = 1
�

h
(� �W ) +K ~Q1

i
~Q1, e2;low = 1

�

h
(� �W ) + 2K ~Q1

i
~Q1v1 and

e3;low =
1
�

h
(� �W )!1 + 2K ~Q1(�V1 + v21)

i
~Q1.

Substituting these results into the market equilibrium condition (27), and tak-

ing a second order approximation around St = 0, again gives (29). Setting Z0 = 0,

Z1 = 0 and Z2 = 0 gives respectively

�W (d1;low � e1;low) = K(c1;low � d21;low) (86)

�W (d2;low � e2;low) = K(c2;low � 2d1;lowd2;low) (87)

�W (d3;low � e3;low) = K(c3;low � d22;low � 2d1;lowd3;low) (88)

All of this is conditional on being in the low risk state at t. We can similarly impose

market equilibrium conditional on being in the high risk state at t. De�ne ci;high

and di;high (i = 1; 2; 3) the same as ci;low and di;low, with p1 replaced by 1�p2. Also
de�ne ei;high (i = 1; 2; 3) the same as ei;low, with the subscripts 1 for ~Q, v, V and

! replaced by subscripts 2. Then imposing market clearing we get three equations

analogous to (86)-(88) with the subscripts low replaced by high. Solving these six

equations jointly gives the solutions for ~Q1, ~Q2, v1, v2, V1 and V2. This is done

numerically in Gauss, using as starting values the solutions for equilibria 1 and 2

without switching.
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Figure 1  Sunspot Equilibria* 
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Figure 2  Sunspot-Like Equilibria* 

Equilibrium 2:

Equilibrium 1: 003.0;05.0;1.1~
=== VvQ

Equilibrium 3: 7.8;4.1;39.0~
=−== VvQ

Equilibrium 4: 7.6;1.2;48.0~
=−== VvQ

* Parameters are as in Figure 1 except that m=1.
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Figure 3 Solution as Function of m (Equilibrium 2)*
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Figure 4 Switching Equilibria*

solid=low risk state; broken=high risk state
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* This is based on the parameters of Figure 2. When p1=p2=1, the high and low risk states correspond exactly to equilibria 1 and 2 in 
Figure 2.



Figure 5  Equilibria with Financial Shocks: No Persistence* 
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Figure 6  Sunspot and Sunspot-Like Equilibria with Financial Shocks* 

* Panel A assumes ρθ=0.4, m=2. Panel B assumes ρθ=0.4, m=0 ; otherwise the parameters are the same as in Figure 5.
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Figure 7b Net worth, leverage and illiquidity
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and leverage series and September 2008 for the monthly illiquidity series. 



Figure 8 Model Simulation*
shaded area = high risk equilibrium; vertical lines = endowment shock
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* The economy starts in the low risk equilibrium. At time 2 the endowment of investors falls from 6 to 2.8. The economy stays in the low risk equilibrium     
until time 8, at which point is shifts to the high risk equilibrium. At time 11 endowments shift back towards the initial allocation. The economy remains in 
the high risk equilibrium until time 14, at which points it shifts back to the low risk equilibrium.

illiquidity


	Frontpage1.pdf
	Abstract

	risk_panics_June_27_with_graphs.pdf

