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ABSTRACT 

 
This paper investigates the impact of climate shocks on violence between herders and farmers by 
using geolocalized data on conflict events for all African countries over the 1997-2014 period. We 
find that a +1℃ increase in temperature leads to a +54% increase in conflict probability in mixed 
areas populated by both farmers and herders, compared to +17% increase in non-mixed areas. This 
result is robust to controlling for the interaction between temperature and ethnic polarization, 
alternative estimation techniques, disaggregation levels, and coding options of the 
climatic/conflict/ethnic variables. When quantifying at the continental level the impact on conflict 
of projected climate change in 2040, we find that, in absence of mixed population areas, global 
warming is predicted to increase total annual conflicts by about a quarter in whole Africa; when 
factoring in the magnifying effect of mixed settlements, total annual conflicts are predicted to rise 
by as much as a third. We also provide two pieces of evidence that resource competition is a major 
driver of farmer-herder violence. Firstly, conflicts are much more prevalent at the fringe between 
rangeland and farmland - a geographic buffer of mixed usage that is suitable for both cattle herding 
and farming but is particularly vulnerable to climate shocks. Secondly, information on groups' 
mobility reveals that temperature spikes in the ethnic homeland of a nomadic group tend to diffuse 
its fighting operations outside its homeland, with a magnified spatial spread in the case of conflicts 
over resources. Finally, we show that violence is substantially reduced in the presence of policies 
that empower local communities, foster participatory democracy, enforce property rights and 
regulate land dispute resolution. 
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1 Introduction

Abel became a herder of sheep while Cain was a tiller of the soil. (...) And Cain said to Abel his

brother, ”Let us go out to the field,” and when they were in the field Cain rose against Abel his

brother and killed him. Bible, Genesis 4:1-18.

Many conflicts around the world have their roots in clashes between farmers and herders.1 In

recent years, these conflicts have flamed up with intensity and scope, leading observers to point

out that the “Sahel is on fire” –both in terms of heat waves and armed fighting– as illustrated

by the Tuareg rebellions for over five decades in Mali, the Mauritania-Senegal Border War, the

recent fighting in Darfur, or the violence between nomadic herders from northern Nigeria and

sedentary agrarian communities in the central and southern zones. A multitude of recent NGO

reports and newspaper articles provide anecdotal evidence that climatic stress magnifies competition

over resources between farmers and herders, accounting for a very substantial share of climate-

related violence.2,3 A typical pattern is the one of nomadic groups experiencing their economic

base threatened by drought and having to move beyond the borders of their traditional homelands,

and thereby infringing in territories of other ethnic groups, resulting in often very violent clashes.

Beyond case study evidence, this gloomy observation of the salience of farmer-herder conflict

is also supported by large-scale data. As described in detail below, roughly a third of fatalities

(30.6%) observed over the 1997-2014 period in Africa happen in areas populated by both nomadic

and sedentary groups, despite they represent only slightly above a tenth of areas (13.4%). Given

these magnitudes it is very surprising that hardly any quantitative evidence exists on farmer-herder

violence and that the related channels and policy responses remain mostly unexplored.

In this paper we investigate the impact of climate shocks on violence between herders and farm-

ers by using geolocalized data on conflict events for all African countries over the 1997-2014 period.

Our empirical analysis is based on the combination of newly merged ethnic groups’ historic mode

of settlement with the Armed Conflict Location Events Data (ACLED), containing information on

the location and type of conflict events and the involved actors. The units of analysis are cells of

0.5×0.5 degree latitude and longitude (approximately 55 km × 55 km at the equator). The core

of the analysis consists in estimating a model of conflict occurrence at the local level and showing

1Conflicts between sedentary groups and herders are as old as mankind, and even appear in the Old Testament
of the Bible in the account of Cain the settler killing his brother Abel the herder. Historical examples are as diverse
as the conquests of settlements by the nomadic Akkadians in ancient Mesopotamia, the invasions of the nomadic
White Huns into the Indian Gupta empire (featuring complex agriculture and manufacture), the clashes between
Attila’s nomadic Huns and the settlers of the Roman Empire, or the centuries lasting conflict between Han Chinese
and nomadic groups such as the Xiongnu, Mongols and Tartars (culminating in the famous attacks led by Genghis
Khan, and triggering the building of the Great Wall of China) (see e.g. Bai and Kung, 2011).

2See Olsson and Siba (2013), International Crisis Group (2017) and also the coverage by CNN [Link], as well other
articles in The Economist including [Link] and [Link]. For example, as related by The Economist of the 28th April
2018, “An attack on a church in Nigeria left at least 19 people dead, including two priests, in the latest incident of
violence between nomadic herders and farmers in the country’s volatile middle belt. The escalating conflict is now
claiming more lives than an insurgency in the north-east of the country by jihadist groups, including Boko Haram”.

3See e.g. Middle East Eye [Link].
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how the impact of temperature shocks on violence are magnified in cells with mixed settlements

(i.e. populated by herders and farmers). The use of georeferenced information enables causal

identification. Including country-year fixed effects and cell fixed effects, we exploit in most of our

econometric specifications within-cell panel variations in violence due to exogenous changes in local

temperature.

Our baseline result is that a one degree increase in temperature leads to a 54% higher conflict

frequency in cells with mixed settlement, compared to 17% in non-mixed cells. The effect is present

even when controlling for the interaction between temperature and ethnic polarization at the local

level. Hence this piece of evidence uncovers a specific logic of the herder-farmer interaction that goes

beyond the standard ethnic polarization channel. This finding is robust to alternative estimation

techniques, disaggregation levels, and coding options of the climatic, conflict and ethnic variables.

We then perform a quantification exercise to gauge the magnitude of the effect. To this purpose,

we forecast future conflict likelihoods, drawing on cell-level projections of global warming until

2040. When aggregated at the continental level, we find that, in absence of mixed settlements,

climate-induced conflicts increase by 26 percent; this number goes up to 33 percent when factoring

in the magnifying effect of mixed settlements. Zooming in on the Sahel zone, these numbers become

even larger, namely 40 percent (when ignoring settlement patterns) and 54 percent (when taking

them into account). To sum up, both for Africa and Sahel, the quantification results show that the

presence of mixed cells with nomads and settlers magnifies climate-induced conflict risk by roughly

one third (from 26 to 33 percent and 40 to 54 percent respectively).

In the second part of the paper we show that conflicts between herders and farmers are much

more prevalent at the fringe between rangeland and farmland –a geographic buffer of mixed usage

that is suitable for both cattle herding and farming but is particularly vulnerable to climate shocks.

Our interpretation is that violence tends to be driven by economic competition over resources rather

than being solely due to a clash of cultural norms leading to ethnic hostility and raids, driven

by coordination problems, difficulty of communication and ancient hatred. Next, we look at the

diffusion over space of climate-induced violence, a question of central importance for understanding

how climate shocks drive the escalation of violence from local into regional or national conflicts.

More specifically, we show that spikes in temperature in the ethnic homeland of a nomadic group

tend to increase the spatial distance between its fighting operations and its homeland. We also

show that this spatial spread of violence is magnified in the case of events (i) being reported in the

ACLED dataset as linked to disputes over resources; (ii) taking place in cells with water supply

or suitable for agriculture. All in all, this evidence is compatible with the view that heat shocks

trigger mobility of nomadic groups leading to violent competition for the remaining fertile lands.

In the last part of the paper we investigate how formal institutions are able to mitigate climate-

induced conflicts. The idea is that, in many places, informal arrangements between ethnic groups

traditionally regulate the management of common resources and settle disputes over property rights.

In times of disruptions, climate-induced migrations perturb these fragile arrangements, harm coop-

eration and lead to an escalation of violence. By contrast, formal institutions can provide a greater
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resilience to climate and migration shocks. We find evidence that coherent democratic institutions,

and in particular the protection of property rights and land dispute resolution mechanisms are

key factors attenuating the conflict-fuelling effect of heat shocks. These results are in line with

the Coasian logic of property rights’ attribution eliminating externalities, and thereby curbing the

scope for conflict.

Our findings speak to the fast-growing literature on climate security and the effects of global

warming on political stability which has documented a strong causal link between temperature and

conflict (see the surveys in Dell, Jones and Olken, 2014; Burke, Hsiang and Miguel, 2015). Worries

about the adverse effects of climate change appear with increasing frequency on title pages of major

newspapers, and in recent years research on climate change and armed conflict has multiplied and

received increasing public attention.4 However, there is a substantial gap in our understanding of

the underlying mechanisms linking heat to hate or of the remedies available to reduce the political

footprint of global warming. Unsurprisingly, Burke, Hsiang and Miguel (2015, p. 577) in their

recent survey and meta-analysis piece listed as first research priority the “better understanding

of the mechanisms linking climate to conflict”, while the review article of Dell, Jones and Olken

(2014, p. 790) stresses that ”there are plausibly important channels that have, to date, received

comparatively little study” and that “carefully understanding the specific mechanism would help

target potential intervention”. These are exactly the issues we investigate in the current paper.

Some candidate mechanisms have been emphasized in the literature. First of all, in an important

and recent contribution, McGuirk and Burke (2017) provide compelling empirical evidence on the

prominent role played by the opportunity cost of fighting. Hence, it is highly plausible that at least

part of the impact of adverse weather shocks is transmitted through lower agricultural productivity

and a reduced opportunity cost of soldiering for producers (see e.g. Miguel, Satyanath and Sergenti,

2004; Hidalgo et al., 2010; Fetzer, 2019). While our analysis is consistent with the role played by

agricultural productivity, we will emphasize the major magnifying effect of a particular type of

ethnic cleavage driving much of the role of agricultural productivity in our sample.

A second proposed channel of transmission in the literature relates to adverse weather shocks

shrinking the economy, hence reducing the fiscal capacity of the government and eventually its state

capacity. This results in weaker governments that are more likely to be swept aside in a coup in the

event of adverse weather shocks (see Burke and Leigh, 2010; Brückner and Ciccone, 2011; Chaney,

2013). While this channel of transmission is not at odds with our findings, we control for it through

the inclusion of country-year fixed effects. In fact, our coefficient of interest is barely affected when

accounting for country-year fixed effects, which may indicate that country-level shocks such as

regime change are not be the dominant force at work for our sample.

Further, a third potential mechanism concerns psychological channels of transmission of heat

fuelling crime, which may partly be linked to biological processes in the body (see e.g. Jacob, Lefgren

and Moretti, 2007; Ranson, 2014; Burke, Hsiang and Miguel, 2015). Again, while it is plausible

4See for example the survey of Burke, Hsiang and Miguel (2015) and the recent overview piece in The Economist
[Link].
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that part of the effects of climate shocks can indeed by attributed to such psychological factors,

we would expect such processes rooted in human biology to be universally present throughout the

sample, and hence picked up by our batteries of fixed effects.

While the above mechanisms can surely explain part of the impact of climate on conflict, another

channel has received very little attention: The role of ethnic group migration and ensuing clashes

between different ethnic groups.5 International medias have at length discussed climate-related

movements of nomadic groups and violent massacres between farmers and herders, but it has oddly

received only dismal attention in academia. This is surprising, as indeed there is a sizeable literature

having shown that adverse climate shocks lead to population movements (Barrios, Bertinelli and

Strobl, 2006; Feng, Krueger and Oppenheimer, 2010; Marchiori, Maystadt and Schumacher, 2012;

Bohra-Mishra, Oppenheimer and Hsiang, 2014), and one would intuitively expect that nomadic

and settler ethnic groups disputing the same plot of land may lead to tensions and violent disputes.

The existing literature on settler-nomad conflicts consists, to a large extent of the findings,

in anthropology and most contributions focus on case study evidence (see the survey of Fratkin,

1997). An example is the seminal work of Scott (2017). There is only very limited quantitative

evidence such as Bai and Kung (2011) on China, Theisen (2012) on Kenya, Olsson and Siba (2013)

on Darfur and Ralston (2013) and Meier, Bond and Bond (2007) on the Karamoja border region

between Uganda and Kenya.6 Recent work-in-progress by McGuirk and Nunn (2020) – carried out

independently – links rainfall to herder-farmer conflicts. Overall, and in contrast to this existing

literature, our study systematically assesses the impact of heat shocks over the whole African

continent, with a focus on the modulating impact of mixed settlements by settler-nomad groups

and an emphasis on mechanisms and policy recommendations.

Given that our channel studies resource competition between rival production methods (crop

farming versus cattle herding), recent empirical work on agriculture and conflict is also relevant

(Harari and La Ferrara, 2018; Grosfeld, Sakalli and Zhuravskaya, 2020; Berman, Couttenier and

Soubeyran, 2019; Iyigun, Nunn and Qian, 2017), as well as theoretical work on production technol-

ogy, capital and labor-intensiveness and conflict (Grossman, 1991; Dal Bó and Dal Bó, 2011; Bot-

ticini and Eckstein, 2014). Last but not least, our work is also embedded in the growing literature

linking ethnic cultural norms and local institutions to conflict (Michalopoulos and Papaioannou,

2013; Grosjean, 2014; Moscona, Nunn and Robinson, 2018).

5See also the literature studying conflict between ethnic groups (which does not focus on climate-related issues)
(see e.g. Montalvo and Reynal-Querol, 2005a; Esteban, Mayoral and Ray, 2012; Rohner, Thoenig and Zilibotti, 2013;
Esteban, Morelli and Rohner, 2015).

6Somewhat related is also the paper of Schleussner et al. (2016) that studies whether disasters coincide with armed
conflict in ethnically fractionalized areas. Their data and methodology are very different from ours: They focus on
disasters (the magnitude of which may depend endogenously on a series of country characteristics, such as e.g. state
capacity) while we focus on (arguably more exogenous) temperature shocks. Further, contrary to Schleussner et al.
(2016), who compare the coincidence rate of conflict after a disaster with the pooled baseline risk for a group of several
countries and years, we control for time-invariant local characteristics using cell fixed effects and for any shocks hitting
a country in a given year through the inclusion of country-year fixed effects. Their work is complementary to ours,
and we find, consistently with them, some (small) impact of ethnic diversity in general, but uncover very strong
effects of heat shocks for the particular context of areas with mixed settler-nomad population which is the novel angle
we examine.
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In a nutshell, our contribution to the literature is manifold: It is the first study of ethno-

economic conflict that simultaneously i) studies farmer-herder conflicts, ii) covers a whole continent

(Africa) and iii) provides evidence on the mechanisms at work. In particular, we provide evidence

of an important understudied channel, namely migration under climate stress leading to violent

competition on resources. We find that this configuration can account for roughly a third of

Africa’s fatal conflicts and magnifies the impact of temperature shocks threefold. Finally, our

analysis permits to formulate a series of policy recommendations: Stepping up formal institutions

for property rights protection and land dispute resolution can substantially attenuate the risk of

farmer-herder tensions in times of heat stress where economic disruption puts at risk traditional

arrangements.

The remainder of the paper is organized as follows. Section 2 presents the data. Section

3 explains our identification strategy, and displays our baseline results, as well as a battery of

robustness checks. The mechanism driving the results is investigated in Section 4 and policies

mitigating the conflict are addressed in Section 5. Finally, Section 6 concludes.

2 Data

We organize our empirical analysis around a geo-referenced, annual panel dividing Africa into

equally-sized grid cells of .5× .5 decimal degrees (corresponding to 55×55 km around the equator).7

Relying on cells rather than on administrative boundaries may attenuate endogeneity concerns, and

yields the further advantage that cells can be matched exactly to the spatial unit of the weather

data, which is our main source of variation across time.8 The unit of observation in most of our

analysis is cell × year.

2.1 Data sources

Conflict data. The Armed Conflict Location and Event dataset (ACLED) by Raleigh et al.

(2010) is used to generate the main dependent variable for our analysis. ACLED collects conflict

event data from multiple accounts commonly published by regional and national media, NGOs and

humanitarian organizations. The data is available for the years since 1997 for the African continent,

which determines the starting point of our panel. The date and geographic location (longitude and

latitude) of each event are reported, which allows us to assign each event to a cell-year pair. We

7This approach has become increasingly popular in recent years. Examples of recent papers employing a similar
methodology include, among others, Michalopoulos and Papaioannou (2013), Harari and La Ferrara (2018), Berman
et al. (2017), Iyigun, Nunn and Qian (2017) and McGuirk and Burke (2017).

8This is ideal for two reasons: First, using exactly overlapping spatial units reinforces data precision, because
there is no need to average multiple cells for large administrative units that potentially could smooth extreme
weather events. Second, the temporal variation in temperature remains comparable across cells, whereas differently
sized administrative units may smooth the within standard deviation for larger units. For example, calculating the
average temperature for two countries that vastly vary in size (e.g. large Algeria vs. small Togo) may smooth the
data for Algeria, resulting in a smaller within-cell standard deviation. This may be misinterpreted as differences in
sensitivity to variations of temperature. Put differently, if large Algeria were to display a lower impact of temperature
on conflict this could be spuriously due to variation being smoothed out.
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build conflict, a binary variable coding for conflict incidences that is equal to 1 when at least one

ACLED event has occurred in a given cell and year. Since information on events is based on media

report, some regions may receive a larger (lower) coverage than others, and consequently are over-

(under-)represented in ACLED. Our empirical design accounts for this issue with the inclusion of

cell-fixed effects, absorbing systematic coverage bias. Moreover, we show that our results are similar

when focusing on major, violent types of events for which over- or under- reporting is unlikely.

A desirable feature of ACLED is the availability of information on the type of conflict. We

exploit this information and only consider events categorized as “battles”, “violence against civil-

ians” or “riots”, excluding thereby less violent events. We prefer to restrict conflict events by type

rather than by a fatality threshold, as the latter is subject to substantial missing observations and is

generally less reliable. The fighting actors are also identified for each conflict event in ACLED. We

exploit this information by matching actors to their ethnic origins, hence allowing us to trace back

rebel groups’ ethnic affiliations. As a robustness exercise, we also carry out our baseline analysis

using an alternative data source for georeferenced conflict events, the UCDP Georeferenced Event

Dataset (GED) (Sundberg and Melander, 2013).

Settlement mobility, herders, farmers. We measure ethnicities’ settlement mobility with

the variable “Settlement Patterns” (v30) from the Ethnographic Atlas (Murdock, 1967).9 The

Ethnographic Atlas comprises over 100 variables on historic ethnic traits and cultural norms. While

the data was published over 60 years ago, they are still considered an accurate record of ethnic

traits and have been used frequently in recent research.10 The variable “Settlement Patterns” is

categorically ordered with values ranging from 1 to 8, with decreasing mobility in settlement as

values increase.11 We assign to a group the status Nomad equal to 1 if Settlement Patters are in

category 1 or 2 (“Nomadic or fully migratory” or “Seminomadic”), otherwise 0. In contrast, groups

of lesser mobility in their settlement within the categories 3 to 8 (“Semisendentary” to “Complex

settlements”) are assigned the status Settler equal 1, otherwise 0. We investigate alternative

coding options in the sensitivity analysis (Section 3.4).

In the rest of the paper, we consider these historical mobility characteristics, Nomad and

Settler, as proxies for ”herder” and ”farmer” groups, respectively. As shown below in Figure 2,

being classified as a historical settler group is strongly associated with living in areas suitable for

crop farming, while having been historically nomadic correlates strongly with inhabiting soils that

are infertile for farming, but suitable for herding.

Pre-sample location of ethnic groups. We exploit information on the geolocation of the eth-

nic groups listed in the “Geo-referencing of Ethnic Groups” (GREG) dataset (Weidmann, Rod and

Cederman, 2010). GREG is the geo-referenced version of the 1964 “Soviet Atlas Narodov Mira”,

9The dataset was later digitalized by Gray (1999).
10Recent examples include Nunn (2008); Nunn and Wantchekon (2011); Michalopoulos and Papaioannou (2013).
11In particular, a score of 1 = Nomadic or fully migratory; 2 = Seminomadic; 3 = Semisendentary; 4 = Compact

but impermanent settlements; 5 = Neighborhoods of dispersed family homesteads; 6 = Separated hamlets, forming
a single community; 7= Compact and relatively permanent settlements; 8 = Complex settlements.
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and covers 929 ethnic groups world wide, out of which 221 are located in Africa. We match its

African sub-sample with the 401 ethnic groups retrieved from of the Ethnograhic Atlas, which leaves

us with 216 groups after the data cleaning process. For all these groups, we assemble information on

their mobility patterns and location.12 In particular, we generate a dummy Mixed settlement

that codes for the coexistence of nomads and settlers in a given cell. In other words, if at least

one nomadic group and at least one settler group are located in a cell, then Mixed settlement

equals 1, otherwise 0. Our results are shown to be robust to selecting alternative thresholds for

distinguishing nomads and settlers, as well as to controlling for population density. Since the settle-

ment dummies are cross-sectional and pre-date our sample, they are taken as constant throughout

our sample period. We focus on pre-sample data and do not account for potential changes in

settlements caused by migration, since migration is potentially endogenous to conflict. Note that

ignoring changes in settlements introduces some imprecision, which may lead to attenuation bias,

making our results appear weaker than they are. As shown below, comparing data on settlements

and historical homelands of ethnic groups at different points in time reveals a high persistence in

group location patterns. Little has changed over time and transhumant pastoralism remains the

most common cattle husbandry practice in the Sahel, with 70-90 percent of herds being moved in

line with the seasonal availability of grazings and water (Toure et al., 2012). Cattle herds tend to

be moved northward (southward) during rain (dry) season, usually operating within a 100 to 200

kilometers radius. For example in Guinea, internal migratory routes can cover distances from as

little as 20 kilometers up to 100 kilometers and more across localities (Higazi and Abubakar Ali,

2018).

Weather data. We focus on temperature shocks for two reasons. First, according to the existing

literature, temperature has a particularly strong impact on conflict and is –if anything– measured

more precisely than other weather variables (see the surveys of Dell, Jones and Olken, 2014; Burke,

Hsiang and Miguel, 2015). Second, and more substantially, temperature is an input factor for both

crop farmers and livestock herders, because heat shocks reduce crop and plant yields (Grosfeld,

Sakalli and Zhuravskaya, 2020) and increase evaporation in seasonal floodplains, hence hitting

crop farmers and herders alike and fueling resource competition between them.13 Various publicly

available weather datasets have been constructed using a variety of underlying methods, each one

12The aforementioned Ethnograhic Atlas can be linked to the ethnic groups in “The Tribal Map of Africa” (Mur-
dock, 1959). The map is generally considered as a record of historic homelands and was geo-referenced by Nunn (2008)
and later matched to the Ethnograhic Atlas by Michalopoulos and Papaioannou (2013). Nunn and Wantchekon (2011)
show that the map is still fairly accurate today with a .55 correlation between the location of ethnicities in the Tribal
Map and geo-referenced individual ethnicity data in 2005 from Afrobarometer. Nevertheless, to minimize attenuation
bias due to potential migration, we prefer to retain a more recent map of Africa’s ethnic groups: This is the reason
why we focus on the (pre-sample) spatial projection of the African sub-sample of GREG. Unlike in Murdock’s map,
the geographic extent of groups in GREG can overlap (i.e. more than one group in a location) and ethnic groups can
occur in more than one location.

13Another option could have been to focus on rainfall variation. One reason for which we prefer to use temperature
shocks is that the impact of rainfall has been found in the literature to be less universally clear-cut than temperature
with rain mattering more for some countries than for others and its data quality being more often challenged. Also,
the impact of rainfall is typically non-monotonic (absence of rain causes drought, whereas a lot of rain causes flooding),
while for our African sample heat shocks have been found to have a monotonically detrimental impact.
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with its strengths and weaknesses (an assessment of the different methods can be found in the

two aforementioned surveys). We retain monthly temperature data from the Climate Research

Unit at the University of East Anglia (Jones and Harris, 2008). This dataset records monthly

temperature per grid cell, which we then average across time to achieve annual observations. The

data belong to the class of “gridded” weather data sets, which means that missing values in areas

without ground station coverage are interpolated based on a statistical procedure. This results in

a balanced panel and makes the data set a popular choice among economists. A first potential

issue could be a lack of spatial precision caused by interpolation. However, the spatial variation

of temperature is relatively low, attenuating concerns about data precision (Mitchell and Jones,

2005). Another potential issue could be a spurious correlation between the interpolation scheme of

the temperature data and conflict. To minimize this risk, we cross-validate our analysis with other

temperature data.

Data on agriculture and pastoralist production. We rely on crop suitability data from the

Globcover dataset version 2.3 built by the European Space Agency (Bontemps et al., 2011). We

define a variable capturing agricultural suitability that includes land-use classes 11, 14, 20 and 30.

Soil infertility (bare land) is defined by the land-use class 200 of Globcover. For each variable, the

cell share is calculated. To measure livestock production, we use data from the Gridded Livestock

of the World (GLW) by FAO (Robinson, Franceschini and Wint, 2007), which rely on sub-national

censuses for several types of livestock for the year 2005. Second, the Harmonized world soil database

(HWSD) (Nachtergaele et al., 2008) provides us with information on a range of inherent and

dynamic soil properties that are relevant for crop production.

Other data. For the analysis of heterogeneous effects and policy implications, we also include

country-level data on institutional features from the Database of Political Institutions (DPI) (Beck

et al., 2001) and the Polity IV project (Marshall, Gurr and Jaggers, 2012). Information on land

dispute resolution is derived from the Ease of Doing Business Report (World Bank, 2018) and

information on political corruption is from the Varieties of Democracy (V-Dem) Project (Coppedge

et al., 2018). Information on federal systems is based on data from Pippa Norris’ Democracy Time-

series Dataset (Norris, 2009).

2.2 Descriptive statistics

Figure 1, left panel, displays the spatial distribution of the different settlement characteristics. Out

of a total of 9,687 sample cells, 3,579 (36.8%) are inhabited only by nomads and 4,854 (49.8%) only

by settlers and 1,308 (13.4%) are subject to mixed settlement. Mixed cells are spatially clustered

at the transitional outskirts of deserts. The line of mixed settlement cells runs horizontally along

the semi-arid Sahel zone that divides the Southern border of the Sahara desert from increasingly

humid areas towards the continent’s center. At the aggregate level, twenty-seven African countries

contain cells with settler-nomadic coexistence.
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Figure 2 further provides insights into the geographic/agricultural characteristics facilitating

each mobility mode. This log-scaled figure shows that agricultural suitability, NDVI (remotely-

sensed measure of vegetation strength, average of monthly data from 1997-2014) and soil infertil-

ity (agricultural suitability and soil fertility based on the average of six two-month observations

throughout 2009), are powerful predictors of mobility modes: Barren lands tend to by populated

by nomads while settlers are located in fertile areas with high crop suitability. Interestingly, for

each geographical feature, mixed cells lie in the intermediate range between nomadic and settler

areas. This observation shows that most mixed settlement cells correspond to transition zones, at

the fringe between geographical units –a pattern that we exploit for the purpose of our empirical

analysis in Section 4.2. Finally, these findings inform us on the accuracy of the procedure building

our main variable of interest, Mixed settlement, that is based on pre-1970 historical data on

ethnic groups and the matching of two different datasets (settlement patterns and location). With

this respect, the high correlation between characteristics related to physical geography and human

geography is a reassuring validity check.

The spatial distribution of violence in Africa is depicted in the right panel of Figure 1, with

darker shadings indicating cells with a higher share of sample years with conflict incidence. Conflict

events are spread throughout the continent, with particularly important incidence around the Sahel

and in the Great Lakes region. Across all countries in our sample, 83,724 conflict events had

been reported between 1997 and 2014, which we aggregate to 13,929 cell-year conflict incidents.

Strikingly, the 13.4% of cells that have mixed settlement account for 17.6% of conflicts events and

30.6% of fatalities.

Figure 3 presents both between- and within- cell evidence on temperature variations in Africa.

The left panel shows large spatial variations in average temperatures across cells in Africa. However,

in our empirical design, the sources of identification are residual spatio-temporal variations in

temperatures after filtering out cell-level fixed effects. With this respect, visual inspection of the

right panel reassuringly suggests that within-cell variations in temperatures are also substantial.

We supplement the previous graphical analysis with some descriptive statistics of our main

variables of interest in Table 1. Contrasting cells with mixed settlement and those inhabited by

either nomads or settlers only (No mix) indicates that mixed settlement cells are significantly more

prone to conflict, experience higher average temperatures and are populated by a larger number of

ethnic groups.

3 Empirical Analysis

In this section we discuss our identification strategy and present the baseline results. Then, we

provide a series of alternative specifications assessing the robustness of the results.
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Figure 1: Spatial and temporal Heterogeneity of Violence and Settlement

Settlement Patterns
Mixed settlement
Settlers only
Nomads only
Missing data

Conflict Frequency
0.00
0.00 - 0.25
0.25 - 0.50
0.50 - 0.75
0.75 - 1.00
Missing data

Notes: Left Panel: Spatial distribution of settlement patterns, based on settlement mobility data from Murdock’s
Ethnographic Atlas matched on to geolocation information from the Geo-referencing of Ethnic Groups dataset
(GREG). Green (blue) cells represent regions inhabited by sedentary (nomadic) ethnic groups only. Red cells repre-
sent regions in which settlers and nomads coexist. Grey areas indicate missing data. Right Panel: Spatial distribution
of conflict, 1997-2014. Darker shadings indicate cells with a higher proportion of years with at least one conflict in-
cident, based on data from the Armed Conflict Location and Event Data Project (ACLED).

3.1 Identification strategy

Assessing the causal impact of mixed settlement on violence involves a range of methodological

challenges. The most obvious one relates to omitted factors that drive a long-run correlation

between population admixture and latent proneness to conflict. Likely candidates are terrain

characteristic (soil quality, mining area, etc.). This is not a minor concern, as the direction of

this bias is most likely positive: Fertile and valuable lands tend to be historically more contested

between ethnic groups in the long run, leading to contemporaneous conflict and potentially spatial

co-existence of nomads and settlers. To address these endogeneity concerns, our empirical design

follows the identification strategy developed in the recent conflict literature that exploits spatial

variations in rainfall shocks or commodity price shocks (Miguel, Satyanath and Sergenti, 2004;

Dube and Vargas, 2013; Berman et al., 2017). While we instead consider temperature shocks,

the basic idea remains similar, as we interact those shocks with local characteristics of the cell to

identify our main effects. The potential confounders and omitted variables are absorbed by a rich

structure of fixed effects (notably cell fixed effects). Many methodological aspects of the estimation

procedure are discussed in Berman et al. (2017).

To abstract from local determinants of violence and guarantee exogeneity, we exploit the vari-

ations in local temperatures and estimate a specification of the following form:
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Figure 2: Resource Availability and Mobility Determine Settlement Style
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Notes: The sample includes 9,687 cells and considers average values over the period 1997-2014. This figure depicts
box plots, dividing the data into three mobility categories: Cells with nomads only, mixed settlement and settlers
only. The vertical axis measures the cell average (agricultural suitability and infertile soil) / Value multiplied by 100
(NDVI) in each category in a logarithmic scale for presentation purposes. The median is indicated by the red dot; the
25th (75th) percentile is indicated by the lower (upper) bound of the box; the lower (upper) adjacent value is indicated
by the limits of the lower (upper) whisker. The first set of box plots uses land cover data by Globcover to depict the
average land share suitable for agriculture. The second set of box plots uses the Normalized Difference Vegetation
Index (NDVI), derived from data by NOAA (Vermote et al., 2014) to approximate the average vegetational strength
in cells. The third set of box plots uses land cover data by Globcover to depict the average land share of bare soil.

conflictkt = α× Tkt + β × Tkt ×Mixed settlementk + FEk + FEit + Ckt
′δ + εkt, (1)

where (k, t, i) denote respectively cell, year, and country. The dependent variable, conflictkt

is a variable measuring the incidence of conflict events at the cell-year level, i.e., a binary variable

coding for non-zero events in the ACLED dataset on civil conflicts. Alternative measures of violence

are considered in the sensitivity analysis. FEk are cell fixed effects, FEit are country×year fixed

effects, and Ckt is a vector of other potential determinants of conflicts. The vector of cell fixed

effects picks up all time-invariant unobserved heterogeneity, such as land quality, ethnic polarization,

mountainous terrain or being in a mining region. Country-year fixed effects filter out all country-

wide shocks affecting violence such as a recession, an election year, a collapse of the rule of law or

property rights.

The main explanatory variable, Mixed settlementk is a binary variable coding for mixed

settlement in cell k. The variable Tkt corresponds to the average temperature in degree Celsius in cell
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Figure 3: Spatial and Temporal Heterogeneity of Temperature

Average Temperature
> 27.50
25.00 - 27.50
22.50 - 25.00
20.00 - 22.50
< 20.00
Missing data

Cell-SD Temperature
> 0.55
0.45 - 0.55
0.35 - 0.45
0.25 - 0.35
< 0.25
Missing data

Notes: Left Panel: Cell-level average in temperature in degree Celsius, over the sample period 1997-2014. Blue (red)
color indicates areas with low (high) average temperature. Grey areas indicate missing data. Right Panel: Cell-level
standard deviation in annual temperature in degree Celsius, over the sample period 1997-2014. Blue (red) color
indicates areas with low (high) variability in temperature over time. Temperature data is from the Climatic Research
United (CRU).

k and year t. Our sensitivity analysis investigates alternative coding rule for Mixed settlementk

and Tkt (Section 3.4). In equation (1) we focus primarily on the estimates of β, the coefficient of

the interaction term between temperature and the mixed settlement dummy. This coefficient can

be interpreted as the impact on local violence of an exogenous local heat shock (i.e. increase in local

temperature with respect to its long-run average) in cells where nomads and settlers co-exist. Given

the inclusion of cell fixed effects, the identifying variations stem from within-cell across-year changes

in temperature.14 Our identification assumption relies on the exogeneity of the interaction term,

Tkt×Mixed settlementk with respect to the local determinants of conflict. As for temperature,

this assumption is natural; as for mixed settlement, it is guaranteed by the inclusion of the cell

fixed-effect.

Due to the high-dimensional battery of fixed effects (i.e. more than 880 country×year fixed

effects and 9000 cell fixed effects in most specifications), we estimate equation (1) using a Linear

Probability Model in our baseline specifications. Spatial correlation must be taken into account,

given the high spatial resolution of the data. In all specifications we estimate standard errors with

a spatial HAC correction allowing for both cross-sectional spatial correlation and location-specific

serial correlation, drawing on the method developed by Conley (1999) and recently applied in

König et al. (2017). We use the acreg command developed by Colella et al. (2019). No constraint is

14In other words, equation (1) is equivalent to a model where Tkt is de-trended by its cell-specific time-average T̄k
in both the linear and interaction terms.
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Table 1: Averages and Differences of the Types of Settlement

Mixed settlement No mix Total Mean difference (Mix - No mix)

P(Conflict > 0) 0.090 0.078 0.080 0.011a

(0.286) (0.269) (0.271) (0.002)

Battles 0.056 0.041 0.043 0.015a

(0.229) (0.197) (0.202) (0.001)

Riots 0.031 0.029 0.029 0.002c

(0.172) (0.167) (0.167) (0.001)

Violence against civilians 0.048 0.044 0.044 0.005a

(0.214) (0.204) (0.206) (0.001)

Temperature (◦C) 24.972 24.740 24.771 0.232a

(3.654) (3.418) (3.451) (0.024)

Number of tribes 4.210 3.628 3.706 0.582a

(2.825) (3.143) (3.108) (0.022)

Share - Mixed settlement 0.134

Share - Nomads only 0.367

(sd) (sd) (sd) (se)

Notes: The sample includes 9,687 cells for the years 1997-2014. Columns 1-3: Summary statistics. Columns 1-2 divide
cells along mobility patterns, based on settlement mobility data from Murdock’s Ethnographic Atlas matched onto
geolocation information from the Geo-referencing of Ethnic Groups dataset (GREG). Column 1 depicts the average
(standard deviation) of cells inhabited by at least one settled and at least one nomadic group (“Mixed settlement”);
column 2 identifies cells inhabited by either settlers or nomads (“No mix”). Column 3 considers the complete sample.
Column 4 performs a difference of mean test between mixed and non-mixed settlement cells, with the following
significant levels: c significant at 10%; b significant at 5%; a significant at 1%. Conflict indices are based on data by
the Armed Conflict Location and Event dataset (ACLED); annual temperature averages are derived from monthly
temperature data by the Climatic Research United (CRU).

imposed on the temporal decay for the Newey-West/Bartlett kernel that weights serial correlation

across time periods. In the spatial dimension we retain a radius of 500 km for the spatial kernel,

close to the median internal distance in our sample of African countries according to the CEPII

geodist dataset.

3.2 Baseline results

Table 2 reports the baseline estimation results of equation (1). In column 1 we first assess the

impact of temperature shocks on conflict and then compare our results to the existing evidence. To

this purpose we estimate a partial version of the model where only the linear term of temperature

is included. We find that a local heat shock (average temperature being filtered out by cell fixed

effects) increases the likelihood of local conflict incidence. Reassuringly for the quality of our data

and scrutinized sample of countries, this is in line with the literature, both qualitatively and quanti-

tatively: Our point estimate implies that a 1 degree (1σ within) increase in temperature translates

into a 25% (8.7%) increase in conflict probability, while the meta-analysis by Burke, Hsiang and

Miguel (2015) finds an average effect of 13.2% per 1σ increase in temperature. Note that temper-

ature could have a non-monotonic effect on conflict, as extremely cold regions may economically
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Table 2: Mixed Settlement and Conflict

Dep. var.: Incident Incident Incident Incident ln(Events+1)
(1) (2) (3) (4) (5)

T 0.020a 0.014c 0.013 0.010 0.016
(0.007) (0.007) (0.009) (0.008) (0.015)

T × Mixed settlement 0.029a 0.028a 0.058a

(0.010) (0.010) (0.021)

T × Polarization 0.013 0.007 0.024
(0.009) (0.009) (0.018)

Cells 9687 9687 9687 9687 9687
Observations 174366 174366 174366 174366 174366
Cell FE X X X X X
Country × Year FE X X X X X

Notes: LPM estimated with OLS. An observation is a cell and a year. The sample includes 9687 cells for the years
1997-2014. T measures temperature in degree Celsius; Mixed settlement indicates cells with both settlers and nomads;
Polarization measures cell-level polarization. Dependent variables: Incident indicates conflict incidence and is equal
one if at least one conflict event occurs in a cell and year; ln(Events+1) is the logarithm of the number of conflict
events plus 1 per cell and year. Coefficients are reported with spatially clustered standard errors in parentheses,
allowing for a spatial correlation within a 500 km radius of a cell’s centroid and infinite serial correlation (Conley,
1999). c significant at 10%; b significant at 5%; a significant at 1%.

benefit from years with milder temperatures. However, modern Africa is highly unlikely to benefit

from heat shocks, with an average temperature of 24.7 degree Celsius throughout our sample. And

with respect to hot regions, the existing literature finds that heat shocks fuel violence (see Dell,

Jones and Olken, 2014; Burke, Hsiang and Miguel, 2015).

In column 2 we turn to the estimation of the full version of the model. The interaction term

between temperature and population mixture, our coefficient of interest, is positive and significant

at the 1 percent level. Thus, a spike in temperature increases conflict risk in cells where nomads and

settlers co-exist. This difference is quantitatively large. A 1 degree Celsius increase in temperature

leads to a 17.5% higher conflict frequency in non-mixed cells, versus 53.8% in mixed cells.

A candidate mechanism for explaining this finding is ethnic polarization (e.g. Montalvo and

Reynal-Querol, 2005b; Esteban, Mayoral and Ray, 2012). As previously mentioned, in mixed set-

tlement cells inhabit two or more ethnic groups (i.e. at least one nomad and one settler group),

hence such cells are more likely to be polarized, which could potentially be a driver of violence. We

investigate this question in the next two columns with the aim of showing that there is a specificity

of the farmer-herder interaction that goes beyond the standard polarization channel. In column 3

we replicate the previous specification with ethnic polarization substituting to mixed settlements

in the interaction term. In line with the existing literature we find that polarization magnifies the

conflict risk. However, when in column 4 we include both the interaction terms with mixed settle-

ments and with polarization simultaneously, we see that our coefficient of interest (i.e. temperature

shocks interacted with mixed settlements) continues to have a highly statistically significant effect

with a magnitude that is comparable to the one of column 2 (while the interaction with ethnic po-

larization is not statistically significant). This confirms that the conflict-proneness of farmer-herder
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admixture has a logic that is different from the one of ethnically polarized areas. Column 4 is our

preferred specification.

In column 5 we extend the analysis by looking at the intensive margin. To this purpose

we replicate column 4 with an alternative measurement of the dependent variable, namely the

log(number of conflict events + 1) rather than a binary incidence variable. The additive shifter +1

is a standard procedure to cope with the very large number of zeros on the left-hand side (92% of

observations). The benefit is that non-violent cells are not dropped from the estimation sample,

a desirable feature given the very large number of fixed-effects to be estimated. However, this

functional form is distorting the distribution of the variable and this potentially affects the point

estimates. We investigate alternative coding options and specifications in our robustness analysis.

Generally, we find a positive and statistically significant coefficient of the interaction term. This

shows that heat shocks magnify not only the incidence (column 4) but also the intensity of violence

(column 5) in areas where nomads and settlers co-exist.

3.3 Quantification: Climate change and future farmer-herder conflicts

Relying on the baseline estimates of Table 2, column 2, we now report a quantification exercise

of how climate change until 2040 may exacerbate the risk of conflict. Data and methodology are

discussed in greater details in Appendix A.

Our procedure draws on existing projections of expected global warming at the cell level. We

use forecasting data on monthly surface air temperature at the 50km spatial resolution from the

Coordinated Regional Downscaling Experiment (CORDEX) (Gutowski et al., 2016); this multi-

institutional project endorsed by the World Climate Research Programme produces data and studies

that are regularly reported by the Intergovernmental Panel on Climate Change (IPCC). In line

with existing work (see e.g. Burke et al. (2009)), we do not rely on a single projection, but instead

perform a multi model ensemble by calculating the arithmetic mean across four climate model

temperature outputs. There remains of course much uncertainty for every forecast given the wide

range of policy choices available to governments that will impact on global warming. We focus on

the intermediate emission scenario RCP4.5, which assumes the stabilization of the radiative forcing

level and is considered as one of the more likely outcomes (Thomson et al., 2011; Pachauri et al.,

2014).

For each cell, we compute the prospective temperature in 2040 as the cross-model arithmetic

mean averaged over the 2030-2049 period (to limit weight on a potential ”outlier” year). For

making valid comparisons, retrospective temperature in 1995 must also be model-generated and

is computed as the cross-model arithmetic mean averaged over the 1985-2004 period. Note that

1995 has been chosen as reference year because it is close to the starting year of our sample period

(1997) and the CORDEX data are available only up to 2005. The cell-level change in temperature

between 1995 and 2040 is simply built as the difference between prospective and retrospective

temperatures. Finally, this cell-level temperature change is multiplied by the estimated coefficient

of 0.14 for non-mixed cells and 0.043 (=0.014 + 0.029) for mixed cells (Table 2 and col.2). We
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then obtain for each cell the projected change in violent incident likelihood associated with climate

change.

The projected conflict increases due to global warming are depicted below in Figure 4, both at

the local and national levels. The left panel displays for each cell the surge in conflict scaled as a

change in violent incident likelihood. Strikingly, particularly large numbers are found in the Sahel

region. Two factors drive this pattern: First of all, this region is estimated to experience particularly

large temperature increases, and second, the presence of many mixed settlements magnifies the

effect. In the right panel, climate-induced increase in conflict incidents is reported for the ten

most violent Sub-Saharan countries over 1997-2014 and with at least 1% share of mixed cells.

Our quantification procedure allows us to disentangle the purely ”meteorological” effect of rising

temperatures from its interaction with the ”political” magnifying effect of mixed settlements. We

accordingly report on the right panel the share of the overall impact that is due to the temperature

shock only (dark gray) and its interaction with the presence of mixed settlements (light gray). The

complete results at the country level for all African countries are reported in the Appendix Table

A1.

Figure 4: Climate Change and Projected Violence
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Notes: Left Panel: For each cell, the map depicts the projected change in conflict probability associated with climate
change by 2040 (based on estimates in Table 2, col. 2). Temperature forecast data come from CORDEX. Right Panel:
For each country, the bar represents climate-driven projected change in conflict incidents in 2040 with respect to its
1997-2014 average. Dark gray section of the bar depicts the change that is attributable to temperature variations
only (ignoring mixed settlement patterns) and light gray section is the additional effect resulting from the interaction
of temperature variations and mixed settlement patterns. The list of countries shown is restricted to the ten most
violent Sub-Saharan countries between 1997-2014, with at least 1% share of mixed cells.

Aggregating over all cells, we are able to compute a projected number of conflicts for the whole

of Africa. We find that, when ignoring the effect of mixed settlements, conflicts are predicted to

increase by 26 percent due to global warming, while this number goes up to 33 percent when taking
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into account the magnifying effect of mixed settlements.15 When zooming in on the Sahel zone –

which is an area often pinpointed in policy debates – these numbers become even larger. Global

warming is projected to increase conflicts in Sahel by 40 percent when ignoring settlement patterns,

and by even 54 percent when taking the magnifying effect of mixed settlements into account. To

sum up, both for Africa and Sahel, the quantification results show that the presence of mixed cells

with nomads and settlers magnifies climate-induced conflict risk by roughly one third (from 26 to

33 percent and 40 to 54 percent respectively).

3.4 Sensitivity analysis

In this section, we perform a battery of sensitivity checks to test for the robustness of the baseline

estimates of column 4, Table 2. In what follows, we report only a summary of the main results; all

tables and a detailed discussion are relegated to the Online Appendix section B.

Types, intensity and persistence of conflicts. In Table B1 we study the impact of temper-

ature shocks in mixed settlements on different types and intensity of conflict events. This serves

the purpose of assessing whether the baseline findings are driven by particular conflict types, and

if they also hold when focusing on battles and high-intensity events, for which reporting bias is

least likely. We find that our baseline results continue to hold for all conflict types considered,

i.e. for battles, riots and violence against civilians, and that the effect of temperature shocks in

mixed settlements is stronger for large-scale events. This analysis attenuates concerns about re-

porting bias and highlights the great policy relevance of tackling such conflicts. In Table B2 we

take into account the potential persistence of violence, by controlling for conflict in the past. In

such a dynamic panel setup, however, it is well-known (Nickell, 1981) that the results need to be

interpreted with caution. This being said, our coefficient of interest retains statistically significance

and remains of a similar magnitude.

Interpretation of the mixed settlement variable. Table B3 aims at controlling for the influ-

ence of nomadic presence, addressing potential concerns that, in the baseline analysis, the variable

mixed settlement could simply pick up the impact on violence of groups with greater geographical

mobility. It is found in this table that temperature shocks interacted with nomadic presence –if

anything– reduces the conflict risk, and that it is indeed the co-existence of nomadic and sedentary

groups in the same location that magnifies the violent impact of temperature shocks. Related, in

Table B4 we control for the presence of a series of possible confounders (interacted with temperature

shocks) that may correlate with mixed settlements. With respect to its baseline counterpart, the

point estimate is unaffected when controlling for population density, the number of ethnic groups,

and ethnic fractionalization.

15In an average year during our sample period there are 773 incidences of conflict, which is projected to increase
by 200 events on average when ignoring the magnifying effect of mixed cells (i.e. applying the estimated coefficient
of 0.014 from Table 2, col.2, for all cells ), while it increases by 259 events when taking into account the magnifying
effect (applying the augmented coefficient of 0.014 + 0.029 = 0.043 for mixed cells).
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Definition of settlement patterns. In Table B5 we investigate how sensitive our results are to

using alternative coding rules for categorizing ethnic groups into nomads and settlers. We continue

to detect strong and robust effects– no matter which definition we apply. Furthermore, we look at

whether the results are driven by a specific subset of countries. As detailed in the Online Appendix

Section B, one stark feature of our group matching algorithm is that Egypt is coded as having

mixed cells across the whole country. In Table B6 we show that our results go through when we

drop Egypt from the estimation sample. Next, in the second half of the same table, we restrict the

sample to countries bordering the Sahel zone, which is motivated by the casual observation that

farmer-herder conflicts appear to be particularly pronounced in this region. Our baseline results

prove to be robust to all of these sensitivity exercises.

Country borders. In Table B7 we investigate whether the presence of a country border in a

given cell could represent a confounding factor. It is found that neither excluding border cells from

the sample, nor controlling for the distance to the closest border affect our baseline results.

Measurement of weather shocks. We also explore alternative options for measuring of our

main source of exogenous variations, namely weather shocks. We start in Table B8 with investigat-

ing alternative functional forms and weighting of temperature shocks. It is found that our baseline

results are not sensitive to how a temperature shock is defined. Next, we control in Table B9 for the

role of precipitation (rain) and its interaction with temperature shocks. While we do not detect an

effect of rain fall shocks, we continue to find a strong and robust effect of the explanatory variable

of interest, temperature shocks in mixed settlement cells.

Climate zones, biomes and soil properties. In Tables B11 an B10 we exclude the possibility

that our results are driven by underlying climate zones or areas with particular vegetation (so-called

biomes). We also check in Table B12 that our results are robust to controlling for underlying soil

stress.

Further robustness exercises. We also replicate our baseline analysis using alternative conflict

data from the UCDP georeferenced Event Dataset (Sundberg and Melander, 2013) that focuses on

violence perpetrated by larger-scale and more structured groups. Given that part of farmer-herder

violence corresponds to localized fighting by informal (non-structured) actors, we expect weaker

results for such a more restrictive actor definition (that leads to a drop in observed fighting events

by 50 percent). This is what we find in Table B13: While the results are qualitatively consistent,

the coefficients are less precisely estimated. Another sensitivity check focuses on an alternative

temperature source issued by the University of Delaware (UDEL) (Matsuura and Willmott, 2012).

As depicted in Table B14, the coefficient of interest remains positive and highly significant, al-

though of smaller magnitude. Further, in Table B15 we study whether we also find an association

between mixed settlements and conflict in a cross-sectional setting (refraining from using temper-

ature shocks). Our findings indeed document a positive association between mixed settlement and
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conflict. Last but not least, in Table B16 we control for basin-specific trends and Table B17 allows

for spatial and serial correlation in standard errors. For both exercises, the coefficient of interest

retains its statistical significance.

4 Mechanisms at work

As mentioned in the introduction, several mechanisms may be at work for explaining our findings:

Economic competition for access to resources (land), long-run grievances, or differences in social

norms and informal institutions. In this section, we focus specifically on the economic competition

channel, and provide various pieces of evidence suggesting that it is empirically relevant. The main

objective of this section is to test for this mechanism by exploiting the various dimensions of our

data (i.e. time-series, geolocation, and the identity of the perpetrators). We first provide a verbal

theory highlighting how climate-induced mobility of nomads harms local social arrangements on

the management of common land and resources and can trigger conflicts. We then revisit our main

findings in the spirit of disentangling the competition channel from other channels of transmission.

Finally, we document climate-induced mobility of nomadic groups.

4.1 Conceptual framework

Competition channel. Nomads and settlers differ in a variety of dimensions. The main dif-

ference is in terms of production technology, as they typically operate in areas with different soil

characteristics. Nomads make an extensive use of low quality open rangeland for cattle herding,

while settlers focus on cultivating enclosed tracts of better quality farmland for both crop farming

and grazing.16 Hence, in most instances, they do not compete for the same land. However, as

documented in many case studies (see e.g. Benjaminsen, Maganga and Abdallah, 2009; Olsson and

Siba, 2013; Olaniyan and Okeke-Uzodike, 2015; International Crisis Group, 2017), conflicts arise

in areas of mixed usage, typically at the fringe between rangelands and farmlands. There, nomads

may be tempted to bring their cattle on cultivated lands and competition on scarce resources leads

to conflicts. In a nutshell, this economic “Competition” channel states that heat shocks lead to

property right disputes between nomads and settlers over the remaining fertile land at the fringe

between rangeland and farmland. This tragedy of the commons results in conflicts being driven

both by the motivation to grab a scarce resource and the lower opportunity costs resulting from a

lower productivity in droughts.

Institutions regulating the commons. The problem is magnified by the lack of formal in-

stitutions aiming at establishing and enforcing property rights (see the classic argument by Coase

(1960) which he incidentally illustrates with conflicts between herders and crop farmers). In these

16In modern times, almost all nomadic tribes operate cattle herding, only few of them are hunter/gatherers (see
Dyson-Hudson and Dyson-Hudson, 1980); by contrast, crop farming leads to sedentary life because the time horizon
of the investment in farming is long (Goldstein and Udry, 2008). This said, settlers also practice cattle herding but
in that case it is mostly operated in enclosed pastures.
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(often) remote territories, state capacity is weak and regulation by central authorities is absent.

However, as shown e.g. Ostrom (1990, 2009), Williamson (2009) or Nyborg et al. (2016), informal

institutions and social norms may emerge in the long-run and substitute to the lack of formal insti-

tutions. The idea is that repeated interactions between nomads and settlers at the fringe between

rangeland and farmland enable users of this territory to establish rules for how the commons (e.g

water) and land (e.g. pastures) have to be cared for and used in a way that is both economically

and ecologically sustainable.

From a game-theoretic standpoint, these arrangements rely on the perspective that future in-

teractions discipline current compliance to the rule and cooperation. Hence, they are naturally

vulnerable to short-run changes in population composition: migration inflows of individuals origi-

nating from far-distant groups, with different habits and norms, reduce information and memory

of the game; migration outflows mechanically reduce the time horizon of the game and unravel co-

operation (see e.g. the experimental evidence of Duffy and Ochs (2009), that cooperation is easier

to sustain in repeated games with fixed pairs than with random matching).

Finally, the last element of our argument is that the portability of the productive asset of

nomads and settlers differs. Transhumant pastoralism follows the seasonal availability of fodder.

For instance in Mali, cattle herds move North during the rain season and return South when

resources shrink during dry season (Toure et al., 2012). In time of climatic hardship farmers cannot

relocate their asset (land) but herders can move their cattle to more fertile areas. The larger the

temperature shock is, the more likely nomads are to move to new areas far from their traditional

territory of transhumance. And this comes at the risk of being confronted to new ethnic/social

groups and destabilized local social arrangements in the management of the commons. In other

words, when climate change forces nomads to migrate, this tends to erode informal institutions and

trigger conflict on land and resources both at destination and origin.

Cultural channel. An alternative explanation for farmer and herder clashes could be the differ-

ences in social norms between different ethnic groups, which may make communication and dispute

resolution harder. As Marxists would put it, the infrastructure (production technology) influences

the superstructure (community politics and social norms). Thus, over centuries, differences in so-

cial organization and norms of behavior may have emerged between nomadic and sedentary groups

and within these categories. In a nutshell, according to this “persistent culture” explanation (see

the recent survey by Voth et al. (2020)), clashing cultural norms lead to ethnic hostility and raids,

driven by coordination problems, difficulty of communication and ancient hatred.

4.2 Competition vs Culture

We now aim at disentangling the economic competition channel from the cultural persistence chan-

nel. Our empirical strategy exploits the long-run spatial evolution (potentially driven by climate

change) of the fringe between rangeland and farmland. Places that are not located at the fringe

anymore, but used to be in the past, tend to be populated nowadays by descendants of former set-
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tlers and former nomads. In these places, culture-driven conflicts may potentially keep on bursting;

by contrast, the competition motive is likely to exert no influence anymore (because the fringe has

moved).

The main challenge consists in tracing the time evolution of the fringe. With this respect, we

build fringe, a binary variable coding for cells currently located at the fringe between rangeland

and farmland. By contrast, we interpret Mixed settlement, that is based on pre-1970 data on

settlement patterns, as a variable coding for cells that were historically located at the fringe. In

detail, we define fringe as cells featuring an above-median share of agricultural land and at the

same time an above median share of bare land, based on data issued by Globcover for the year 2009.

The combination of cropland, farmland and infertile soil in close proximity to each other allows

us to identify the agricultural frontier, i.e. farm land facing open range land. Indeed, fringe cells

following our definition scatter along the Southern border of the Sahara, as shown in Figure C6 in

the Appendix.

Our verbal theory predicts that a heat shock in cell k in year t tends to: (i) increase the

likelihood of conflict in k [various channels discussed in the survey literature]; (ii) even more so

in cells historically populated by nomads and settlers [Culture Channel]; (iii) and even more so

in cells populated by nomads and settlers and currently located at the fringe of rangeland and

farmland [Competition Channel]. Note that we also expect to observe more conflicts in cells at

the fringe in general, whatever the population composition [Vulnerability Channel]. The reason

is that agricultural productivity may be more vulnerable to temperature shocks in these areas.

According to USGS (2020) (Link), “these transition zones have very fragile, delicately balanced

ecosystems. Desert fringes often are a mosaic of microclimates”. We accordingly estimate our

baseline model after including the triple interaction between fringe and our variable of interest

Tkt × Mixed settlementk (note that for completion, the double interaction Tkt × fringek is

also included). We interpret the coefficient of Tkt ×Mixed settlementk as an indication of the

cultural channel and the coefficient of the triple interaction as capturing the competition channel.

For example, if we find that temperature shocks in mixed settlements are statistically significant

but not the triple interaction, this could be interpreted as an indication that farmer-herder conflict

may be mostly due to cultural differences, while if we find a strong impact of the triple interaction

term, we can conclude that not only the historical group presence matters but also the actual

resource competition of these two modes of production today.

This empirical strategy is sensitive to measurement errors on both current population composi-

tion at the cell-level and on the exact location of the fringe between rangeland and farmland. When

studying whether nomadic-settler production technology competition may be partly responsible for

clashes between ethnic groups, one of course has to first investigate whether historical group loca-

tions and methods of production are still relevant today. It turns out they are. First, the ethnic

group homeland borders are quite stable (as shown in Figure C7). Second, the use of production

technologies is very persistent, as shown in Figure 2 above. In fact, 65 percent of the African labor

force is still in agriculture and it represents 32 percent of the GDP (Al-Amin et al., 2008), and
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in the Sahel region, livestock accounts for 40 percent of the agriculture (Kamuanga et al., 2008).

Table C1 shows that nomadic homelands are still linked to production features associated with

nomadic cattle herding, while areas settled by sedentary groups feature much more agriculture and

more fertile soils today.

Table 3 below displays the main results on the mechanisms at work. While the variable T ×
Mixed settlement captures, as before, the impact of temperature shocks in historically mixed

settlements, the variable T × fringe picks up the heat shock effect in areas that are today both

suitable for agriculture and for cattle herding and where current resource competition should be

greatest. In column 2, we find that both variables are statistically significant and of expected

sign. In column 3 we then include the interaction T × Mixed settlement × fringe. While

this interaction is highly statistically significant, the variable T ×Mixed settlement ceases to be

statistically significant. This is consistent with the interpretation that historical cultural differences

in ethnic groups do only matter today when economic competition in production is still present.

Our findings do not imply that culture does not matter, but highlights the fact that the impact of

cultural differences is greatly magnified in contexts in which actual economic competition for scarce

resources is present. Column 4 shows that this result prevails when controlling for polarization,

while column 5 reveals robustness to focusing on the intensive rather than extensive margin of

conflict.

Tables C2, C3 and C4 in the Appendix show that these results are robust to alternative defini-

tions of resource competition and the joint presence of both production technologies. Table C2 is

based on alternative data sources from different reference years for the construction of fringe cells.

Solely relying on land cover data from a single reference year potentially runs the risk to induce

measurement error, as land cover may have changed over time, e.g. due to desertification and cli-

mate change. Panel A consults land use data for the year 1992 by the Center for Sustainability and

the Global Environment (SAGE) and Panel B uses data for the year 2014 by Fao (GLC-SHARE).

Results in both cases are robust and in line with Table 3. In Table C3 we focus on cattle output

as proxy for the nomadic production technology, which leads to a similar picture: conflict con-

centrates at the conjunction of both production technologies (crop farming and cattle herding).17

While cattle output is arguably less exogenous to conflict than our fringe variable, the results at

hand emphasize the central role of competing production functions for the occurrence of farmer-

herder conflicts. Table C4 uses alternative definitions of fringe. Unlike in the main specification,

here the agricultural frontier does not rely on remotely-sensed information, but on soil properties

that are considered crucial for growing capacities of vegetation.18 We find similarly-sized coeffi-

cients of the triple interaction, whereas the initial interaction of mixed settlement and temperature

remains. This might be due to the fact that a soil’s properties are one of many input factors neces-

17Here, fringe is defined as cells with an above-median share of crop and bare land and an above-median cattle
density, measured with data from the Gridded Livestock of the World (GLW3) dataset by Fao for the year 2005 and
available for Sub-Saharan Africa.

18To construct our fringe variable in this setting, remotely-sensed data on bare soil is exchanged for soil property
data. In detail, fringe is defined as cells with an above-median share of crop and grass land and an above-median
share of constrained soil.
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Table 3: Channels: Competition Versus Culture

Dep. var.: Incident Incident Incident Incident ln(1+Conflicts)
(1) (2) (3) (4) (5)

T 0.014c 0.008 0.011 0.007 0.010
(0.007) (0.007) (0.007) (0.008) (0.015)

T × Mixed settlement 0.029a 0.024a 0.010 0.008 0.011
(0.010) (0.009) (0.008) (0.009) (0.018)

T × Fringe 0.045a 0.024b 0.024b 0.051a

(0.011) (0.010) (0.010) (0.018)

T × Mixed set. × Fringe 0.064a 0.064a 0.163b

(0.022) (0.022) (0.069)

T × Polarization 0.007 0.024
(0.009) (0.017)

Cells 9687 9687 9687 9687 9687
Observations 174366 174366 174366 174366 174366
Cell FE X X X X X
Country × Year FE X X X X X

Notes: LPM estimated with OLS. An observation is a cell and a year. The sample includes 9687 cells for the years
1997-2014. Fringe indicates cells with an above median share of agricultural land (total of crop and grass land) and
an above-median share of bare soil; data is derived from Globcover 2009, and correspond to categories 11, 14 ,20, 30
and 200, respectively. T measures temperature in degree Celsius; Mixed settlement indicates cells with both settlers
and nomads; Polarization measures cell-level polarization. Dependent variables: Incident indicates conflict incidence
and is equal one if at least one conflict event occurs in a cell and year; ln(Events+1) is the logarithm of the number
of conflict events plus 1 per cell and year. The regressions control for cell and country-year fixed effects. Coefficients
are reported with spatially clustered standard errors in parentheses, allowing for a spatial correlation within a 500
km radius of a cell’s centroid and infinite serial correlation (Conley, 1999). c significant at 10%; b significant at 5%;
a significant at 1%.

sary for agricultural production, thus being less precise in predicting production functions correctly

(e.g. a poor nutrient endowment may be compensated for with fertilizers or effective crop rotation

scheme, hence not necessarily result in bare land). Finally, Table C5 confirms that conflicts are

limited to cells with both agricultural and bare land (i.e. fringe cells). Neither agriculture, nor

bare soil on their own drive our results, underlining that conflict only occurs if both production

functions are feasible (i.e. herding and farming).

4.3 Climate-induced spread of violence

So far our empirical analysis has focused on local violence, i.e. in the immediate surroundings of

mixed-settlement areas. We now investigate another element of our conceptual framework, namely

that heat shocks trigger mobility of nomadic groups leading to competition and conflict for more

fertile lands. Addressing this question is important because it informs on how climate shocks drive

the spatial spread of violence.

The main empirical challenge consists in retrieving information on the effective presence and

influence of certain groups in particular territories. We assume that groups react primarily to
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heat shocks affecting their ethnic homeland. If heat shocks negatively impact the productivity of

grasslands in their homeland, we expect groups to move elsewhere in search of more fertile lands

and consequently to be potentially involved in violent events further away from their homeland.

To illustrate the patterns of mobility that we have in mind, consider Figure 5 that displays

mobility patterns of the Dinka ethnic group in Sudan. The homelands of this traditionally nomadic

group are represented by green polygons, and each dot represent the geolocalisation of one given

fighting event involving this group and taking place outside their traditional homelands. Warmer

colors (i.e. red and orange) depict events occurring in years with high temperatures measured in

the Dinka homelands, while colder colors (i.e. blue) correspond to colder years. Visual inspection

suggests a positive correlation between heat and the range of mobility – in hotter years the Dinka

are involved in conflict events taking place further away from their homelands. This is confirmed

by a correlation analysis between temperature and distance yielding a coefficient of 0.29 that is

significant at the 1 percent level.

Figure 5: Conflict and Distance to Dinka Homeland, Sudan
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Sources: Esri, USGS, NOAA
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Note: Correlation of temperature and mobility is 0.29 (significant at the 1% level).

Notes: The unit of observation: ACLED conflict events, matched to GREG for Dinka affiliated groups. The green
polygon depicts Dinka ethnic homeland according top GREG. Points indicate ACLED conflict event location. Tem-
perate in a given homeland centroid and year is indicated by different colors. For illustrative purposes, events in the
same location are dispersed locally.

Moving beyond this example of a single group, we now investigate systematically such mobility

patterns for various ethnic groups. To this purpose, we extend our dataset in a new dimension,

namely to the fighting group operating in each location. We focus on active rebel groups involved

in at least one violent conflict event over the sample period, ignoring other types of fighting groups.
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ACLED considers as rebel groups “political organizations whose goal is to counter an established

national governing regime by violent acts”. Further, we restrict the analysis to Sahel countries.19

With the Sahara desert to the north and relatively fertile biomes to the south, the semi-arid Sahel

zones has been subject to numerous violent incidents between settlers and nomads in recent years,

as discussed earlier.

We test whether heat shocks in the ethnic homeland of a rebel group boost its fighting operations

far from its homeland. Following the methodology of Berman et al. (2017), we exploit ACLED

information on the identity of the rebel groups and assign to each group its main ethnic affiliation,

based on the ethnicity of the group’s leaders and troops. This allows us to link rebel groups in

ACLED to settlement information from Murdock’s Ethnographic Atlas and to information in a

group’s ethnic homeland from GREG. We do not include events for which none of the involved

actors has distinguishable ethnic affiliations. Of the 538 rebel groups in our sample, we are able to

match the ethnic affiliation for 145 groups, whereby the remaining groups are dropped. Matched

groups account for 4,406 of 9,290 events. The majority of excluded groups are local, and contrary

to rebel groups, their objective is not to replace or change the political regime in power. As a

next step, we then retrieve from the GREG dataset the geocoordinates of the ethnic homelands to

compute the average yearly temperature in their centroid.

We obtain a dataset containing, for each rebel group, all violent events where the group is

involved. Our unit of analysis is a rebel group × location × year triplet (i, k, t). In this setting,

a location is defined as 1 × 1 km cells, to fully exploit the spatial nature of this exercise and

to be able to track profound changes in nomadic migration patterns. Table C6 in the Appendix

contains descriptive statistics on the sample used in this section. Unconditional evidence shows

that nomadic groups tend to fight further away from their homeland than settlers.

We now study how distance to ethnic homeland of conflict events is affected by heat shocks in

the ethnic homeland of the group, and we estimate the following specification:

distanceikt = β1 ×Thomeland
it + FEi + FEct + εikt (2)

where distanceikt is the distance between the geolocation of the fighting event k and the homeland

centroid the involved group i and Thomeland
it measures temperature in the homeland centroid of the

group.20 Conditional on rebel group fixed effects (i.e. FEi ), the coefficient β1 captures the impact

of temperature on the spatial spread of violence. Given the data structure we cluster standard

errors in the actor-location dimension.21

The estimation results of equation 2 are reported in Table 4. In column 1, all events and groups

19Sahel countries include Algeria, Burkina Faso, Cameroon, Central African Republic, Chad, Eritrea, Ethiopia,
Mali, Mauritania, Niger, Senegal, South Sudan, Sudan.

20In GREG, a single ethnic group can be scattered across multiple locations. Therefore, we assign to each rebel
group-location pair the geographically closest homeland centroid. We allow a maximal distance of 1000 km, although
results are robust to alternative choices as shown in Appendix Table C7.

21Nomadic homelands frequently span across wide geographies. Hence, far apart events fought by the same group
may be very different in their type and intensity.
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are included in the sample. The coefficient of interest is positive and significant at the 1% threshold

confirming that groups tend to fight further away from their traditional area of operation when

heat shocks impact their ethnic homeland. We restrict the estimation to the subsamples of settlers

and nomadic groups only in columns 2 and 3 respectively. Clearly, the effect is limited to nomadic

groups only: The coefficient of interest is 3 times larger and highly significant in the subsample

of nomadic groups while both its magnitude and statistical significance collapse for settlers. In

other words, the climate-induced spatial spread of violence is driven by nomadic groups only. In

the remaining columns we consequently restrict the estimation to this subsample.

We now investigate how the spread of violence relates to the search of new resources and compe-

tition. In Column (4) we make use of fine-grained information on the nature of each violent event,

a unique feature of the ACLED dataset. More precisely, we code as “fighting over resources” all

events whose description in ACLED contains at least one word from a list of key words that pertain

to resources and competition.22 Then, we replicate column (3) for the subsample of events that

correspond to fighting over resources. This specification is very demanding as it leads to a drastic

reduction in sample size. Yet, statistical significance is still very high. And, more importantly,

we observe a threefold increase in the coefficient of interest. A natural interpretation is that the

spatial spread of violence is magnified when it turns to search of new resources. The next two

columns follow the same logic but with a different approach. There, we look at soil quality in the

cells where violence takes place and highlight respectively cells containing water and cells suited for

agriculture. In detail, only cells with an above-median share of cropland and water among all cells

with nomadic conflicts are considered in columns (5) and (6), respectively. Information on land

cover is derived from the Global Land Cover SHARE database by FAO. In each case, the estima-

tion sample is restricted to these cells. Again, we observe that the magnitude of the coefficient of

interest increases substantially with respect to the benchmark in column (3). This confirms that

the spatial spread of violence is more pronounced when nomadic groups move to fertile areas.

In terms of quantification, focusing on the (lower-bound) specification of column 3, we can

see that the effect is quantitatively sizeable. A one SD increase in homeland temperature (+ 3.2

degrees) leads to a distance from homeland increase of 47 km (representing 0.13 SD). When focusing

on the (upper-bound) estimate of column 4, the effect is almost three times larger, i.e. a one SD

increase in homeland temperature translates into an increase in the distance from homeland by 134

km (0.37 SD).

Next, the robustness of these findings is investigated. The baseline imposes a maximal distance

between an event and the centroid of a associated ethnic homeland (distanceikt) of 1000 km.

Panel A in Table C7 limits this distance to maximally 500 km, which omits events further apart

from their homelands. Reducing maximal distance yields smaller coefficient magnitudes, although

the results remain comparable to the baseline. Panel B returns to the full sample, but clusters

the standard errors spatially, allowing for a spatial correlation within a 500 km radius of a cell’s

22The list of key phrases is: land dispute, dispute over land, control of land, over land, clash over land, land
grab, farm land, land invaders, land invasion, land redistribution, land battle, over cattle and land, invade land, over
disputed land, over a piece of land, herd, pastoral, livestock, cattle, grazing, pasture, cow, cattle, farm, crop, harvest.
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centroid and infinite serial correlation. Finally, Panel C changes the unit of observation from the

location-actor-year level to the event level. In this setting, frequently-fought regions receive more

weight, as several events may occur in a single cell and year by a single rebel group. Overall, the

estimation results withstand these robustness exercises.

Table 4: Climate-Induced Mobility and Conflict

Dependent variable: Distance to homeland (centroid, km)

Fighting group: All Settlers Nomads

(1) (2) (3) (4) (5) (6)

T in homeland (centroid) 5.873a 0.839 14.840a 41.879a 24.372a 27.351a

(2.008) (1.821) (4.583) (11.492) (6.746) (8.235)

Events 1904 895 1009 98 509 488

Groups 127 41 86 30 63 63

Group FE X X X X X X

Country × Year FE X X X X X X

Fight over resources only X

Conflict location: Agri. (M) X

Conflict location: Water (M) X

Notes: An observation is a rebel group × location × year. The sample is limited to Sahel countries. Information on
conflict participants is derived from ACLED and matched on the ethnic group level to settlement mobility information
from Murdock’s Ethnographic Atlas. As a result, conflict participants’ mode of settlement can be identified. Multiple
events of the same group within the same 1 × 1 kilometer cell and year are coded as a single observation. T in
homeland (centroid) measures temperature in degree Celsius in the geographic center of a fighting group’s nearest
homeland. A group’s homeland is defined according to the specified ethnic group location in GREG. Column 1
considers all conflict events, column 2 only considers conflict events involving a settler group and columns 3-6 only
considers conflict events involving a nomadic group. Column 4 restricts the subsample of nomadic event further
to events including at least one of the following key words: land dispute, dispute over land, control of land, over
land, clash over land, land grab, farm land, land invaders, land invasion, land redistribution, land battle, over cattle
and land, invade land, over disputed land, over a piece of land, herd, pastoral, livestock, cattle, grazing, pasture,
cow, cattle, farm, crop, harvest. Column 5 (6) restricts the subsample of nomadic events further to events taking
place in cells with an above-median share of farm land (water), with data from Global Land Cover SHARE by Fao.
The dependent variable measures the distance between a conflict event and the center of a participating group’s
homeland. The regressions control for group and country-year fixed effects. Coefficients are reported with standard
errors clustered at the actor-location level in parentheses. c significant at 10%; b significant at 5%; a significant at
1%.

5 Resilience through Formal Institutions and Policies

As discussed above, heat shocks may perturb fragile informal arrangements of cooperation between

groups. While relying on social norms and informal institutions works well in environments that

are characterised by stability and repeated interactions, in times of disruptions (e.g. due to climate

shocks), coherent formal institutions can provide greater resilience to shocks (see the discussion

in Besley and Persson, 2011). In particular, democratic governance and rule of law guarantee

property rights protection, contract enforcement and dispute resolution mechanisms, which we

expect to limit the potential for conflict escalation after adverse shocks, in line with the logic of the
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Coase Theorem (Coase, 1960). We also hypothesize that decentralization and institutions fostering

local-level cooperation and conflict resolution imply that rulings and political decisions are taken

based on detailed knowledge of local conditions and hence may have the potential to curb the

scope for dispute. Thus, in line with this logic, we expect federalism to potentially reduce the

conflict-fueling effect of adverse climatic shocks.

In Table 5 we focus on four dimensions of formal institutions that represent promising ways

of absorbing shocks. In particular, in column 1 we interact our benchmark variable of Tkt ×
mixed settlementk with a binary measure of democracy, high polity: This variable takes a

value of 1 in cells with an above-median value in the Polity variable of the Polity 4 Project in 1996

(pre-sample), and 0 otherwise.23 As expected, we find that in democratic environments there is a

greater resilience to temperature shocks in mixed cells, and the adverse effects of heat waves on

political stability are attenuated. This is in line with the aforementioned logic that democracies

on average do a better job at protecting property rights, enforcing contracts and providing fair

resolutions of disputes.

Democracy has some features, like e.g. free elections, that may be less relevant for our question

of coping with climate shocks than those closely linked to the resolution of land disputes. Hence,

in column 2, we dig deeper into the most relevant features (for our purpose) of democratic rule

of law, namely we interact our benchmark variable of Tkt × mixk with a binary measure of land

dispute resolution, which takes a value of 1 for cells with an above-median degree of immovable

property rights and access to land dispute resolution mechanism (from the World Bank’s Ease of

Doing Business Report), and 0 otherwise. As expected, we find that the coefficient of interest has

a statistically significant negative sign, indicating that indeed sound property rights protection and

land dispute resolution strongly reduces the scope for harmful conflict effects of heat shocks in cells

with mixed settlement.24

While the indicators included in these first two columns are in our view the most important

policy parameters for our purpose, we also provide results for two further governance and insti-

tutional variables below. First of all, we interact Tkt × Mixed settlementk with a measure of

good governance. In particular, we rely on the variable low corruption (from the Varieties

of Democracy (V-Dem) Project) which takes a value of 1 for cells with a below-median degree

of political corruption in 1996 (pre-sample). The underlying idea is that efficient property rights

protection and land dispute resolution require a reliable administration respecting the rule of law

and putting in place high-quality governance, which is linked, among others, to an environment

without endemic corruption. As expected, we find that low corruption environments are more

23In all columns we obviously also always control for all combinations of the variables included in the triple interac-
tion of interest. In particular, we have in column 1 as control variable the interaction of temperature with high polity,
as well as the baseline effect of Tkt ×mix settlementk. Note that both high polity and mixed settlementk are
time invariant, hence their interaction is captured by the battery of cell fixed effects.

24The land dispute variable is a composite of property rights and judicial resolution mechanisms. In Table D1,
we further disentangle which of the two dimensions drives the negative coefficient. Columns 1 and 2 of Table D1
find a negative association between settler-nomad conflict and both stable property rights and judicial systems,
respectively. Including both dimensions in the same regression however shows that property rights appear to play a
more pronounced role than judicial resolution mechanisms, as depicted in column 3 of Table D1.
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resilient to adverse stability effects of heat shocks.

In column 4, we focus on a final institutional feature that we expect to matter in our context:

Federalism. Our binary variable federalism takes a value of 1 in cells located in countries with

federal systems in 1996 (pre-sample); the indicator is based on data from Pippa Norris’s Democracy

Time-series Dataset.25 Federalist organization leads to power devolved to the local level, which

may favor decision-making that appropriately takes into account local conditions. We hence expect

federalist states to be better at solving local land disputes. Our coefficient of interest, i.e. the

interaction of the baseline variable of Tkt × Mixed settlementk with federalism, has indeed

the expected negative sign, implying that the heat-turned-hate nexus is less strong in federalist

countries.

Column 5 includes all the four aforementioned interactions simultaneously. We continue to find

for all four policy variables the negative sign of the coefficient of interest, albeit only statistically

significant for our two main policy variables, namely High polity and High land dispute

resolution.

One limitation to our analysis is that countries are rather large entities spread over a huge

continent (Africa). Hence, comparing heterogenous effects across different countries involves com-

paring places that are potentially thousands of kilometers apart, and may differ in various other

dimensions than just the policy variables we are interested in. To address such concerns, we have

built in the appendix two Tables (D2 and D3) where we limit comparisons to places that are in the

same local environment but on two opposite sides of a border. In particular, in Table D2 we con-

tinue to study the interaction of Tkt×Mixed settlementk with the same battery of institutional

and policy characteristics as in Table 5, but restricting the sample to areas within 75 kilometers of

borders (panel A) and in addition include border-year specific fixed effects (panel B). This amounts

to compare places in the same border area (e.g. a location in Nigeria next to the Niger-Nigeria

border with another location on the other side of this same border), sharing the same local char-

acteristics, but belonging to distinct countries, and hence being exposed to a different institutional

and policy setting. This very demanding exercise is based on a much more homogeneous sample;

yet, we continue to find that institutional features matter. In particular, land dispute resolutions

and federalism continue to tend to mitigate adverse effects of temperature shocks in mixed cells.

Table D3 performs the analogous analysis, but for a wider buffer of 120 kilometers, yielding similar

results as for Table D2.

Overall, we take the results of Table 5 (and the corresponding robustness results in the Ap-

pendix) as evidence that formal democratic institutions with property rights protection and land

dispute resolution contribute to building up resilience in the face of adverse climate shocks.

25We prefer the data source of “Pippa Noris’s Democracy Time Series Data” over available alternatives for several
reasons: First, the data covers all African nations for the year 1996. Second, the data not only defines federal and
unitary states, but also identifies hybrid (confederate) states. This distinction is important, as we are interested in
capturing the effect of fully federal systems.
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Table 5: Resilience Through Formal Institutions and Policies

(1) (2) (3) (4) (5)
Incident Incident Incident Incident Incident

T 0.009 0.008 0.021c 0.014c 0.035b

(0.010) (0.008) (0.012) (0.008) (0.016)
T × Mixed settlement 0.046a 0.041a 0.039a 0.034a 0.059a

(0.012) (0.013) (0.014) (0.010) (0.022)
T × High polity 0.002 0.008

(0.012) (0.013)
T × Mixed set. × High polity -0.059a -0.048a

(0.015) (0.017)
T × High land dispute resolution 0.019 0.024c

(0.014) (0.013)
T × Mixed set. × High land dispute resolution -0.066a -0.050b

(0.019) (0.020)
T × Low corruption -0.018 -0.049a

(0.013) (0.015)
T × Mixed set. × Low corruption -0.036b -0.011

(0.016) (0.018)
T × Federal sates -0.003 0.005

(0.019) (0.019)
T × Mixed set. × Federal sates -0.082a -0.021

(0.028) (0.032)
Constant 0.000 0.000 -0.000 -0.000 0.000

(0.001) (0.001) (0.001) (0.001) (0.001)

Cells 8200 8050 9588 9588 6894
Observations 147600 144900 172584 172584 124092
Sample share - interaction group .44 .42 .51 .1 .92
Mix share - interaction group .1 .1 .1 .11 .11
Cell FE X X X X X
Country × Year FE X X X X X

Notes: LPM estimated with OLS. An observation is a cell and a year. The table tests heterogeneity across relevant
country-wide institutional features that have been argued to potentially mitigate settler-nomad conflict. The sample
includes the years 1997-2014 and the number of included cells in each column varies with the data availability of
the test heterogeneity. High polity indicates cells with an above-median value in the Polity variable of the Polity 4
Project in 1996 (pre-sample); the indicator is derived from country-level data. High land dispute resolution indicates
cells with an above-median degree of immovable property rights and access to land dispute resolution mechanism
in 2014 (post-sample, since no pre-sample data available); the indicator is derived from country-level data of the
World Bank’s Ease of Doing Business Report, variable Land Dispute Resolution index accessed via the Quality of
Government data collection. Low corruption indicates cells with a below-median degree of political corruption in 1996
(pre-sample); the indicator is derived from country-level data of the Varieties of Democracy (V-Dem) Project, variable
Political Corruption Index accessed via the Quality of Government data collection. Federalism indicates cells located
in countries with federal systems in 1996 (pre-sample); the indicator is based on data from Pippa Norris’s Democracy
Time-series Dataset, variable Unitary or Federal State, accessed via the Quality of Government data collection. T
measures temperature in degree Celsius; Mixed settlement indicates cells with both settlers and nomads. Dependent
variable: Incident indicates conflict incidence and is equal one if at least one conflict event occurs in a cell and
year. The regressions control for cell and country-year fixed effects. Coefficients are reported with spatially clustered
standard errors in parentheses, allowing for a spatial correlation within a 500 km radius of a cell’s centroid and infinite
serial correlation (Conley, 1999). c significant at 10%; b significant at 5%; a significant at 1%.
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6 Conclusion

The growing literature on the climate-conflict nexus lacks an in-depth analysis of the underlying

mechanisms and channels of transmission. This knowledge gap represents a dangerous pitfall in

our understanding of this prominent issue and impacts our ability to formulate policy lessons. In

the current contribution we have aimed at addressing this shortcoming. Motivated by anecdotal

evidence and journalistic reports, the current study has analyzed how heat waves translate into

surges of farmer-herder violence in a fine grained dataset covering all of Africa over the 1997-

2014 period. In particular, we find that the greatest effects are found at the fringe between

rangeland and farmland where the land is suitable for both cattle herding and farming. Relying on

a specification that aims to disentangle a pure clash of cultural norms from economic competition

over resources, we conclude that –beyond coordination and communication failure and ancient

hatreds– actual resource competition plays a quantitatively important role for explaining the heat-

turned-hate nexus. We also uncover evidence that nomadic groups engage into more widespread

mobility patterns in the face of heat waves that result in violent competition for the remaining

fertile lands. We complete the investigation by assessing the role of formal institutions and polices

to foster resilience against adverse shocks, concluding that democratic governance, protection of

property rights and sound institutions guaranteeing dispute resolution, are key ramparts against

heat melting away traditional arrangements and boiling inter-group hate.

One key implication of the current paper pertains to climate security and the necessity of assess-

ing the political vulnerability of subnational territories. Our findings highlight how the deleterious

impact of global warming is likely to be magnified by population admixture and mobility patterns

at the local level. Indeed, within Africa, we observe great differences across space, with impacts of

heat shocks on political violence being three times larger in mixed areas populated by both nomadic

and sedentary ethnic groups.

Related to this, taking into account settlements patterns also matters heavily when projecting

the impact of climate change on future fighting: When aggregated at the continental level for all

of Africa, it is found that when ignoring the impact of mixed settlements, conflicts are predicted

to surge by 26 percent, while this number goes up to 33 percent when taking into account the

magnifying effect of mixed settlements. When zooming in on the Sahel region, these numbers

become even larger, namely 40 percent (when ignoring settlement patterns) and 54 percent (when

taking mixed settlements into account).
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Montalvo, José G and Marta Reynal-Querol. 2005b. “Ethnic Polarization, Potential Conflict, and

Civil Wars.” American Economic Review 95(3):796–816.

Moscona, Jacob, Nathan Nunn and James A. Robinson. 2018. “Social Structure and Conflict:

Evidence from Sub-Saharan Africa.” Working Paper.

Murdock, George P. 1959. Africa: Its Peoples and their Culture History. McGraw-Hill Book

Company.

Murdock, George P. 1967. “Ethnographic Atlas: A Summary.” Ethnology 6(2):109–236.

Nachtergaele, F. O., H. van Velthuizen, L. Verelst, N. H. Batjes, J. A. Dijkshoorn, V. W. P. van

Engelen, G. Fischer, A. Jones, L. Montanarella and M. Petri. 2008. “Harmonized World Soil

Database, Version 1.0.”. Dataset (url).

Nickell, Stephen J. 1981. “Biases in Dynamic Models with Fixed Effects.” Econometrica 49(6):1417–

1426.

Norris, Pippa. 2009. “Democracy Time-Series Dataset.”. Dataset (url).

Nunn, N. 2008. “The Long-Term Effects of Africa’s Slave Trades.” Quarterly Journal of Economics

123(1):139–176.

Nunn, Nathan and Leonard Wantchekon. 2011. “The Slave Trade and the Origins of Mistrust in

Africa.” American Economic Review 101(7):3221–3252.

Nyborg, Karine, John M. Anderies, Astrid Dannenberg, Therese Lindahl, Caroline Schill, Maja
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A Future climate

Data and quality. The quantification exercise of Section 3 is based on temperature forecasting

data from the Coordinated Regional Downscaling Experiment (CORDEX) (Gutowski et al., 2016).

Like the Coupled Model Intercomparison Project (CMIP), CORDEX is a multi-institutional effort

endorsed by the World Climate Research Programme and the findings are reported by the Intergov-

ernmental Panel on Climate Change (IPCC). While CMIP is deeply embedded in the assessment

of climate change (e.g. the Paris Agreements), the spatial resolution of the data– ranging from

100 to 200km– is relatively low and hence less suitable for local impact studies. For that reason,

CORDEX has emerged with the last iteration of CMIP and offers data at a spatial resolution of at

least 50km. Unlike CMIP, CORDEX factors regional characteristics such as local topography into

the modeling to improve the local precision of models. Generally speaking, temperature forecasting

precision is relatively high (Masson-Delmotte et al., 2018). CORDEX provides both historic and

forecasting data at different temporal resolutions. We focus on monthly surface air temperature

(tas) at the 50km spatial resolution.

Model ensemble and emission scenarios. Multiple climate institutes around the world par-

ticipate in CORDEX with their own climate models. Each institute performs forecasts for a wide

range of climate variables, following a standardized experimental framework that allows to draw

comparisons across models. To avoid relying on a single climate model, similar to Burke et al.

(2009), we perform a multi model ensemble by calculating the arithmetic mean across four climate

model temperature outputs.4

Any forecast is subject to uncertainty. In the case of climate models a major source of uncer-

tainty stems from green house gas emissions associated to human activity in the future. To account

for different trajectories in the anthropogenic impact on climate change, the climate forecasting

literature developed a set of emissions scenarios, so-called Representative Concentration Pathways

(RCP). Scenarios simulate the climate under a set of green house gas emission concentrations,

ranging from substantial cuts to stark increases in global future emissions. We choose the inter-

mediate emission scenario RCP4.5, which assumes the stabilization of the radiative forcing level

and is considered as one of the more likely outcomes (Thomson et al., 2011; Pachauri et al., 2014).

Provided our relatively short forecasting horizon (2040), our results are unlikely to be sensitive to

the choice of emission scenario, because the trajectories of the main scenarios (RCP 26, 45 and 85)

mostly diverge in the second half of the century.

Data processing. For the quantification exercise of Section 3, the cell-level changes in temper-

ature by 2040 are constructed by subtracting the 1995 historic mean (1985-2004) from the 2040

4We consider only CORDEX models for which the three main RCP emission scenarios 26, 45 and 85 are available.
Calculating multi model ensembles is a common practice that can improve hindcast skill (Kim et al., 2014).



forecast mean (2030-2049).5 1995 is chosen as reference year, as it allows to construct the 20-year

average (ten-year before and after 1995), taking into account that historic model data in CORDEX

is available up to 2005. Further, 1995 appears to be a suitable reference year, as it is close to the

start of the analysis data sample period, 1997. Our final data records temperature for 1995 and

2040, based on the same underlying data, allowing us to calculate cell-level changes in temperature

over time.

5Climate models are calibrated to a long time horizon (2100 and beyond), and tend to perform poorly in modeling
year-to-year changes. A common practice is to take at least 20 years of data and derive the average to identify
difference in temperature trends. Alternatively, a class of models with time horizon of usually up to ten years, so-
called ”near-term” or decadal models, have recently gained popularity among policy makers and researchers to assess
climatic trends over a short period of year. Although these models have become more precise in recent years, they
tend to be less vetted than the long-term models participating in CMIP. Further, so-called seasonal climate models
have an even shorten time span of six month to one year.
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Table A1: Climate Forecast - Country Overview

Country Name ISO 3
∑
β1 × ∆Temp

Future

∑
β̃2 × ∆Temp

Future

∑
Incidents

∑
β̃2×∆Temp

Future∑
Incidents Share-mixed cells

Angola AGO 6.821 8.404 22.944 .366 .106
Benin BEN .802 .802 1.444 .555 0
Botswana BWA 4.342 5.992 1.611 3.719 .182
Burkina Faso BFA 1.935 2.226 5.611 .397 .069
Burundi BDI .209 .209 8.111 .026 0
Cameroon CMR 3.046 3.28 6.5 .505 .032
Central African Rep. CAF 4.275 5.195 19.389 .268 .103
Chad TCD 9.71 13.464 10.278 1.31 .191
Congo (DRC) COD 15.468 15.468 71.333 .217 0
Cote D’Ivoire CIV 2.106 2.106 13.944 .151 0
Djibouti DJI .116 .116 1.333 .087 0
Equatorial Guinea GNQ .135 .135 1.167 .116 0
Eritrea ERI .941 1.532 4.167 .368 .255
Ethiopia ETH 7.737 11.594 42.333 .274 .237
Gabon GAB 1.263 1.263 1.333 .947 0
Ghana GHA 1.579 1.579 6.5 .243 0
Guinea GIN 1.5 1.5 7.889 .19 0
Guinea-Bissau GNB .188 .188 2.667 .071 0
Kenya KEN 3.47 5.843 50.389 .116 .319
Lesotho LSO .236 .236 .667 .354 0
Liberia LBR .503 .503 8.389 .06 0
Libya LBY 10.974 12.278 10.611 1.157 .06
Madagascar MDG 3.514 3.514 9.722 .361 0
Malawi MWI .724 .724 4.944 .146 0
Mali MLI 8.76 11.238 9.056 1.241 .134
Mauritania MRT 7.02 8.255 3.944 2.093 .092
Morocco MAR 3.68 5.026 8.056 .624 .165
Mozambique MOZ 4.896 4.896 11.389 .43 0
Namibia NAM 4.078 5.195 4.556 1.14 .126
Niger NER 8.734 13.355 6.556 2.037 .255
Nigeria NGA 6.441 7.018 72.111 .097 .039
Republic of Congo COG 2.027 2.027 4.889 .415 0
Rwanda RWA .189 .189 4.333 .044 0
Senegal SEN 1.382 1.625 8.5 .191 .095
Sierra Leone SLE .484 .484 8.722 .056 0
Somalia SOM 3.752 3.752 54.667 .069 .004
South Africa ZAF 4.866 4.911 38.722 .127 .004
Sudan SDN 18.281 27.338 72.556 .377 .245
Swaziland SWZ .084 .084 1.556 .054 0
Tanzania TZA 5.407 6.648 11.778 .564 .117
The Gambia GMB .035 .035 1.5 .024 0
Togo TGO .364 .364 2.111 .172 0
Tunisia TUN 1.292 1.749 8.889 .197 .143
Uganda UGA 1.462 2.055 29.556 .07 .197
Zambia ZMB 5.018 5.018 9.444 .531 0
Zimbabwe ZWE 2.72 2.995 32.389 .092 .046

Notes:
∑
β1 ×∆Temp

Future is the projected change conflict probability by 2040 due to climate change and equals the sum
of forecasted change in temperature ∆Temp

Future, multiplied by β1 and summed across a the cells of a country, with β1

referring to the top coefficient (0.014) of Table 2, column 2 (i.e. ignoring settlement).
∑
β2 × ∆Temp

Future additionally
takes settlement pattern into account, with β̃2 equal the sum the coefficients (0.014 + 0.029) in Table 2, column
2.

∑
Incidents is the sum of conflict incidents per country and year in our sample, averaged across 1997-2014.∑

β̃2×∆
Temp
Future∑

Incidents
is the ratio between projected events and past events. ”Share-mixed cell” is the share of mixed cell in

a country.
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B Sensitivity analysis

In this Online Appendix section we present in depth all robustness checks that we summarized very

briefly in the main text under subsection 3.4.

B.1 Types, intensity and persistence of conflicts.

We start by shedding light on the exact type, scale and intensity of farmer-herder disputes. Accord-

ing to the aforementioned case studies and policy reports, farmer-herder conflict can range from

disputes between local farmers and herders to high-intensity combats between rebels and military

forces. To uncover the most relevant types of violence, we exploit the richness of ACLED dataset

and breakdown events into three categories: Battles, Riots and Violence against civilians. We then

replicate column 4, Table 2 with a dummy variable coding for each event category as dependent

variable.6 Results are reported in columns 1 to 3 of Table B1. In all specifications our coefficient

of interest (temperature interacted with mixed settlement) retains its positive sign and statistical

significance. There are two ways to assess its magnitude. In absolute terms, it is smaller than its

baseline counterpart, a direct consequence of the low sample means of battle events, riots and vio-

lence against civilians (respectively 0.04, 0.03 and 0.04, see Table 1). More relevant is its magnitude

relative to the sample mean; there we see that it is comparable to the baseline one. Finally it is

worth noting that battles are events easily reported by external observers and media sources; thus,

they are often the most precisely measured in ACLED. Hence, focusing on battles alone serves also

the purpose of addressing concerns about reporting bias and non-classical measurement errors.

In the rest of Table B1, we scrutinize violence intensity and return to the baseline approach where

all conflict events are pooled together. Column 4 considers the logarithm of the number of fatalities

plus 1 and finds that temperature drives conflict intensity, as the death toll rises with the severity

of heat shocks. Note that data on the fatalities have to be interpreted with caution, as counts

of battle-related deaths may be inaccurate. As an alternative approach we split conflict incidents

into two groups according to their degree of violence: In column 5, “large incidents” report an

above-median number of deaths (> 7) per cell and year, whereas in column 6 “small incidents”

report a below or equal median number of deaths (≤ 7). Results show that violence in mixed cells is

clearly driven by larger incidents, with a positive coefficient significant at the 5% level. By contrast,

in column 6, no statistically relevant relationship between temperature shocks in mixed cells and

small conflict incidents is detected. Quite interestingly, polarization seems to be rather associated

with small-scale events. Overall, these pieces of evidence consistently suggest that farmer-herder

conflicts are associated with large scale, high-intensity violence, highlighting the policy importance

of tackling this type of violence.

6Thus far, the dependent variable has been based on events classified as battles, riots and violence against civilians,
without considering each subtype in isolation.
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We study time persistence of violence in Table B2. To this purpose, we replicate the full baseline

Table 2 in a dynamic panel setup that controls for one-year lag in conflicts (the dependent variable)

at the cell-level. This specification could suffer from Nickell bias (Nickell, 1981) which is why we

have decided not to opt for this type of design in our baseline analysis. Although we observe some

persistence in the effect of past conflicts, it is reassuring to see that our main coefficient of interest

is robust and comparable to its baseline point estimate.

Table B1: Alternative Conflict Definitions

Dep. var.: Battle Riot Vs. civilians ln(Deaths+1) Large incid. Small incid.
(1) (2) (3) (4) (5) (6)

T 0.002 -0.001 0.008 0.033 0.008 -0.002
(0.007) (0.004) (0.007) (0.023) (0.005) (0.003)

T × Mixed set. 0.019b 0.016a 0.019b 0.073b 0.015b 0.006
(0.008) (0.006) (0.007) (0.029) (0.006) (0.003)

T × Polarization 0.009 0.005 0.008 0.032 0.005 0.010a

(0.006) (0.004) (0.008) (0.025) (0.006) (0.003)

Cells 9687 9687 9687 9687 9687 9687
Observations 174366 174366 174366 174366 174366 174366
Cell FE X X X X X X
Country × Year FE X X X X X X

Notes: LPM estimated with OLS. An observation is a cell and a year. The sample includes 9687 cells for the years
1997-2014. T indicates temperature in degree Celsius; Mixed settlement indicates cells with both settlers and nomads;
Polarization measures cell-level polarization. Dependent variables: Battle indicates battles and is equal one if at least
one battle event occurs in a cell and year; Riot indicates riots and is equal one if at least one riot event occurs
in a cell and year; Vs. civilians indicates violence against civilians and is equal one if at least one event involving
violence against civilians occurs in a cell and year; ln(Deaths+1) is the logarithm of the number of fatalities plus 1
per cell and year; Large incidents only considers the sub-sample of conflict incidents with an above-median number of
fatalities involved (i.e. more than 7 fatalities); Small incidents only considers the sub-sample of conflict incidents with
a below-median number of fatalities involved (i.e. less or equal 7 fatalities). Coefficients are reported with spatially
clustered standard errors in parentheses, allowing for a spatial correlation within a 500 km radius of a cell’s centroid
and infinite serial correlation (Conley, 1999). c significant at 10%; b significant at 5%; a significant at 1%.
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Table B2: Controlling for Lagged Dependent Variable

Dep. var.: Incident Incident Incident Incident ln(Events+1)
(1) (2) (3) (4) (5)

Lagged dependent variable 0.098a 0.098a 0.098a 0.098a 0.310a

(0.009) (0.009) (0.009) (0.009) (0.019)

T 0.020a 0.015b 0.014c 0.012 0.017
(0.008) (0.007) (0.009) (0.008) (0.014)

T × Mixed settlement 0.024a 0.022b 0.039b

(0.009) (0.009) (0.017)

T × Polarization 0.011 0.007 0.024
(0.008) (0.008) (0.015)

Cells 9687 9687 9687 9687 9687
Observations 164679 164679 164679 164679 164679
Cell FE X X X X X
Country × Year FE X X X X X

Notes: LPM estimated with OLS. An observation is a cell and a year. The sample includes 9687 cells for the years
1997-2014. This table performs a dynamic regression and controls for the lagged dependent variable; T measures
temperature in degree Celsius; Mixed settlement indicates cells with both settlers and nomads; Polarization measures
cell-level polarization. Dependent variables: Incident indicates conflict incidence and is equal one if at least one
conflict event occurs in a cell and year; ln(Events+1) is the logarithm of the number of conflict events plus 1 per
cell and year. Coefficients are reported with spatially clustered standard errors in parentheses, allowing for a spatial
correlation within a 500 km radius of a cell’s centroid and infinite serial correlation (Conley, 1999). c significant at
10%; b significant at 5%; a significant at 1%.
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B.2 Interpretation of the mixed settlement variable.

The analysis so far has focused on identifying the effect of temperature on conflict in cells with

mixed settlement (i.e. the interaction term in Equation 1) relative to a reference group composed

of cells with either nomads or settlers (the linear term T). We look at the consequences of break-

ing down this reference group in Table B3. We start with investigating whether nomads on their

own are differently exposed to conflict than settled groups; column 1 of Table B3 controls for cells

with Nomads only, interacted with temperature. In this setting the reference group is made of

mixed cells together with settlers-only cells. With a negative coefficient significant at the 5% level,

the result shows that the presence of nomads per se does not appear to drive conflict. Column

2 augments the previous specification with our main variable of interest (temperature interacted

with mixed settlement); there, the linear term T captures the effect of temperature on conflict

for a reference group consisting of cells exclusively inhabited by sedentary groups. We first see

that heat shocks increase conflict in cells with settlers only, with a weakly significant coefficient

of 0.016. Second, nomads on their own do not appear to be differently exposed to conflict than

settlers. Third, the main coefficient of interest capturing the effect of mixed settlement re-

mains comparable in magnitude to the baseline and is significant at the 5% level. Columns (3)

follows the same logic after controlling for polarization. Column (4) investigates the intensive mar-

gin. Overall, our coefficient of interest remains statistically significant throughout all specifications.

As pointed out throughout this paper, nomadic lifestyles differ from sedentary ones in various di-

mensions. Hence, several population features are specific to regions of mixed settlement and could

therefore act as confounders. For example, scattered, seasonal and erratic availability of pastures

facilitates a mobile living arrangement, which directly impacts nomadic agglomeration patterns.

Further, mixed cells represent the gateway to urban areas and historically served as trading posts

across the Sahara. Among them are local economic and cultural centers such as Timbuktu in Mali,

that have been subject to terrorist attacks in recent years. This raises the question whether pop-

ulation density drives our main coefficient. We therefore control for population density with data

from the Gridded Population of the World (GPW) for the year 2000 (CIESIN, 2015), in column 1 of

Table B4. Results show that the effect of temperature on conflict in mixed cells remains unaffected

and highly significant. Moreover, summary statistics in Table 1 show that cells of mixed settlement

have by construction a higher number of groups, because they form upon the borders of ethnic ter-

ritories. In column 2, we additionally control for the number and squared number of ethnic groups

per cell. In column 3, we control for fractionalization, a commonly-applied index to approximate

ethnic diversity. The indicator is calculated at the cell level following the definition in Montalvo
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and Reynal-Querol (2005b) and based on population counts from GPW.7 Column 4 considers the

intensive margin. Note that any time-varying country-wide variation in ethnic composition (e.g.

induced by large-scale migration waves) is absorbed by the country-year fixed effects. All in all,

the effect of fractionalization on conflict is statistically indistinguishable from zero. Overall, our

main coefficient of interest retains its significance and is of similar magnitude as in the baseline

throughout all specifications.

Table B3: Nomads’ Exposure to Conflict

Dep. var.: Incident Incident Incident ln(Events+1)
(1) (2) (3) (4)

T 0.027a 0.016c 0.013 0.026
(0.009) (0.009) (0.009) (0.017)

T × Nomads only -0.018b -0.005 -0.005 -0.018
(0.008) (0.011) (0.011) (0.020)

T × Mixed settlement 0.026b 0.024c 0.047c

(0.012) (0.013) (0.027)

T × Polarization 0.007 0.025
(0.009) (0.018)

Cells 9687 9687 9687 9687
Observations 174366 174366 174366 174366
Cell FE X X X X
Country × Year FE X X X X

Notes: LPM estimated with OLS. An observation is a cell and a year. The sample includes 9687 cells for the
years 1997-2014. T indicates temperature in degree Celsius; Mixed settlement indicates cells with both settlers and
nomads; Nomads only indicates cells with nomadic groups, but no sedentary groups; Polarization measures cell-level
polarization. Dependent variables: Incident indicates conflict incidence and is equal one if at least one conflict event
occurs in a cell and year; ln(Events+1) is the logarithm of the number of conflict events plus 1 per cell and year.
Coefficients are reported with spatially clustered standard errors in parentheses, allowing for a spatial correlation
within a 500 km radius of a cell’s centroid and infinite serial correlation (Conley, 1999). c significant at 10%; b

significant at 5%; a significant at 1%.

7GREG does not contain information on groups’ population shares in cases where ethnic territories overlap. In
such cases, we assign equal population shares to the groups on site. Further, the number of groups and all ethnicity
indices are based on the group definition of Murdock, rather than GREG (i.e. we only use Murdock for group
location). First, this is consistent with how we assign settlement patterns to groups. Second, while GREG provides
more recent group location information, the data is more aggregated (e.g. the Murdock groups Ahaggaren, Asben,
Antessar, Azjer and Ifora all belong to the Tuareg cluster in GREG). If we were to calculate ethnicity indices based
on GREG, we may miss to capture intra-group tensions among sub-groups of a larger cluster (e.g. Ahaggaren fighting
Asben in the above example).
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Table B4: Correlation with Population Variables

Dep. var.: Incident Incident Incident ln(Events+1)
(1) (2) (3) (4)

T 0.008 0.017c 0.017c 0.031c

(0.008) (0.010) (0.010) (0.017)
T × Mixed settlement 0.026a 0.030a 0.030a 0.063a

(0.009) (0.010) (0.010) (0.022)
T × Polarization 0.007 0.013 0.011 0.037c

(0.009) (0.009) (0.011) (0.021)
T × Population density 0.000b 0.000b 0.000b 0.000b

(0.000) (0.000) (0.000) (0.000)
T × # Tribes -0.005b -0.006 -0.015a

(0.002) (0.003) (0.006)
T × (# Tribes)2 0.000 0.000 0.001b

(0.000) (0.000) (0.000)
T × Fractionalization 0.006 0.010

(0.016) (0.026)

Cells 9687 9687 9687 9687
Observations 174366 174366 174366 174366
Cell FE X X X X
Country × Year FE X X X X

Notes: LPM estimated with OLS. An observation is a cell and a year. The sample includes 9687 cells for the
years 1997-2014. T indicates temperature in degree Celsius; Mixed settlement indicates cells with both settlers and
nomads; Polarization measures cell-level polarization; Population density measures the population per km2 with data
from the Gridded Population of the World (GPW), version 4 for the year 2000; # Tribes ((# Tribes)2) accounts for
the (squared) number of tribes per cell; Fractionalization measures cell-level fractionalization; Dependent variables:
Incident indicates conflict incidence and is equal one if at least one conflict event occurs in a cell and year; ln(Events+1)
is the logarithm of the number of conflict events plus 1 per cell and year. Coefficients are reported with spatially
clustered standard errors in parentheses, allowing for a spatial correlation within a 500 km radius of a cell’s centroid
and infinite serial correlation (Conley, 1999). c significant at 10%; b significant at 5%; a significant at 1%.
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B.3 Definition of settlement patterns

We now investigate alternative constructions of the mixed settlement indicator. In the baseline

specifications, the variable is defined by first assigning a settlement status to groups, before iden-

tifying regions in which both settlement modes overlap (c.f. Section 2.1). Although we believe our

assignment rule is a sensible one, there exist plausible alternatives to dividing ethnic groups into

nomads and settlers. Column 1 of Table B5 replicates column 4 of the Table 2 with nomads being

defined as “nomadic or fully migratory“ and “seminomadic” groups, whereas “semisedentary” and

less mobile groups receiving settler status (threshold 2).8 Column 2 now assigns “semisedentary”

groups nomad status, whereas groups with “compact but impermanent settlements” or less mobil-

ity are considered as settlers (threshold 3). Columns 3 and 4 keep on shifting the threshold further

by assigning relatively settled groups to the status nomadic, until in column 5 only “compact and

relatively permanent settlements” and “complex settlements groups” receive settler status. The

coefficients in columns 2-5 are throughout highly significant, although smaller in magnitude than

the baseline. This attenuation pattern is likely attributable to measurement errors as these defini-

tions may be less precise measures of mobility modes.

As outlined above, we match ethnic groups from Murdock’s Ethnographic Atlas to the more recent,

but more aggregate, GREG map. As a result, several Murdock groups may be matched to a single

GREG group. In most of those cases, multiple Murdock groups within the same GREG group

have the same settlement mode. One exception is Egypt, which has mixed cells across the whole

country (see Figure 1).9 While from a data matching point of view this appears to be reasonable, it

may be rather unlikely to find larger settlements in the southern regions of Egypt. In other words,

our matching procedure could induce some measurement error in this particular context of Egypt.

Columns 1 to 3 of Table B6 exclude Egypt from the sample and the results show that the effect

of mixed settlement on conflict is less strong, but remains positive and significant at the 5% and

10% level. Next, we only include countries bordering the Sahel zone in the sample. This exercise

is motivated by the casual observation that farmer-herder conflicts seem most pronounced in this

region. Further, the mobility analysis of Section 4.3 focuses on the Sahelian subsample. Again, the

results presented in columns 4-6 of Table B6 are less precisely estimated, but remain in line with

the baseline.

8For details on threshold definitions, please consult the footnote of Table B5.
9“Arabs of UAR (Egyptians)” in GREG cover all of Egypt and merge with 2 groups in Murdock, “Eqyptians”

(settlers) and “Saadi” (seminomadic). Cross-checking with sources such as Encyclopedia Britannica confirms that
the merge between groups, settlement patterns and geographic extent appears indeed correct.
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Table B5: Alternative Settlement Definitions

Dep. var.: Incident Incident Incident Incident Incident
(1) (2) (3) (4) (5)

T 0.010 0.010 0.010 0.010 0.011
(0.008) (0.008) (0.008) (0.008) (0.008)

T × Mixed settlement 0.028a 0.021a 0.018a 0.018a 0.014b

(0.010) (0.008) (0.007) (0.006) (0.007)

T × Polarization 0.007 0.008 0.008 0.007 0.008
(0.009) (0.009) (0.009) (0.009) (0.009)

Cells 9687 9687 9687 9687 9687
Observations 174366 174366 174366 174366 174366
Cell FE X X X X X
Country × Year FE X X X X X
Nomad-settler threshold (v30) 2 3 4 5 6

Notes: LPM estimated with OLS. An observation is a cell and a year. The sample includes 9687 cells for the
years 1997-2014. T indicates temperature in degree Celsius; Mixed settlement indicates cells with both settlers and
nomads; Polarization measures cell-level polarization. Dependent variables: Incident indicates conflict incidence and
is equal one if at least one conflict event occurs in a cell and year. Ethnic groups’ settlement characteristics are
defined according to the settlement patterns (variable 30) information in George Murdock’s Ethnographic Atlas.
Seven different settlement modes are defined: i) nomadic or fully migratory, ii) semi-nomadic, iii) semi-sedentary,
iv) compact but impermanent settlements, v) neighbourhoods of dispersed family homesteads vi) separated hamlets,
forming a single community and vii) compact and relatively permanent settlements. In our baseline setting, we define
nomads as groups in categories i) or ii) and settlers as groups in categories iii) to vii) (threshold 2). This tables tests
alternative thresholds to divide nomads and settlers, by assigning up to six mobility modes to nomadism (in that case
settlers only consists of group in category vii)). Coefficients are reported with spatially clustered standard errors in
parentheses, allowing for a spatial correlation within a 500 km radius of a cell’s centroid and infinite serial correlation
(Conley, 1999). c significant at 10%; b significant at 5%; a significant at 1%.

xi



Table B6: Exclude Egypt and Sahel Countries Only

Dep. var.: Incident Incident Incident Incident Incident Incident
(1) (2) (3) (4) (5) (6)

T 0.014c 0.011 0.010 0.011 0.007 0.004
(0.007) (0.007) (0.008) (0.011) (0.010) (0.013)

T × Mixed settlement 0.019b 0.018c 0.019c 0.018c

(0.009) (0.010) (0.011) (0.011)

T × Polarization 0.002 0.005
(0.009) (0.012)

Sample No Egypt No Egypt No Egypt Sahel only Sahel only Sahel only
Cells 9366 9366 9366 4012 4012 4012
Observations 168588 168588 168588 72216 72216 72216
Cell FE X X X X X X
Country × Year FE X X X X X X

Notes: LPM estimated with OLS. An observation is a cell and a year. The sample includes data for the years 1997-
2014. Columns 1-3: Sub-sample of Sahel countries (Algeria, Burkina Faso, Cameroon, Central African Republic,
Chad, Eritrea, Ethiopia, Mali, Mauritania, Niger, Senegal, South Sudan and Sudan); columns 4-6: excludes Egypt
from the sample. T measures temperature in degree Celsius; Mixed settlement indicates cells with both settlers and
nomads; Polarization measures cell-level polarization. Dependent variables: Incident indicates conflict incidence and
is equal one if at least one conflict event occurs in a cell and year; ln(Events+1) is the logarithm of the number
of conflict events plus 1 per cell and year. Coefficients are reported with spatially clustered standard errors in
parentheses, allowing for a spatial correlation within a 500 km radius of a cell’s centroid and infinite serial correlation
(Conley, 1999). c significant at 10%; b significant at 5%; a significant at 1%.
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B.4 Country borders

We explore the role of national borders in shaping disputes between farmers and herders. It is

possible that conflict is amplified along national boundaries when local issues over land rights

coincide with national interests. For instance, the Mauritania–Senegal Border War during the late

1980s was initiated by disputes over grazing rights between herders and farmers along the Senegal

River dividing both countries. The conflict escalated into a crisis between the two nations and

resulted in large-scale displacement (Parker, 1991). To determine whether national borders act as

a confounding factor of violence in mixed settlement cells, we first omit cells ranging across national

borders. The coefficient of interest in column 1 of Table B7 remains unaffected. We then return

to the full sample and control for the distance between cells’ centroids and the closest border in

columns 2 to 4. Each of the columns uses a different methodology to calculate border distance, as

described in the table notes. Finally, we control for border cells in column 5. Overall, we observe

that farmer-herder conflict does not appear to be driven by tensions along national borders.

Table B7: Exclude Border Cells and Control for Border Distance

Dep. var.: Incident Incident Incident Incident Incident
(1) (2) (3) (4) (5)

T 0.006 0.016b 0.015c 0.015c 0.010
(0.009) (0.008) (0.008) (0.008) (0.008)

T × Mixed set. 0.030a 0.026a 0.026a 0.026a 0.027a

(0.011) (0.010) (0.010) (0.010) (0.010)
T × Polarization 0.009 0.006 0.006 0.005 0.007

(0.009) (0.009) (0.009) (0.009) (0.009)
T × Border dist. 1 -0.000a

(0.000)
T × Border dist. 2 -0.000a

(0.000)
T × Border dist. 3 -0.000a

(0.000)
T × Border cell 0.005

(0.007)

Sample Exclude border cells All All All All
Cells 8221 9436 9687 9687 9687
Observations 147978 169848 174366 174366 174366
Cell FE X X X X X
Country × Year FE X X X X X

Notes: LPM estimated with OLS. An observation is a cell and a year. The sample includes 9687 cells for the years
1997-2014. Column 1: excludes cells coinciding with national borders; columns 2-4: controls for the distance in
kilometer from a cell’s centroid to national boarders, calculated in three different ways based on bdist measures
from PRIO-GRID version 2.0; column 2: distance to the nearest neighbouring nation connected via land; column 3:
distance to nearest border, irrespective if two countries are divided by water; column 4: distance to the territorial
outline a cell belongs to. T measures temperature in degree Celsius; Mixed settlement indicates cells with both
settlers and nomads; Polarization measures cell-level polarization. Dependent variables: Incident indicates conflict
incidence and is equal one if at least one conflict event occurs in a cell and year; ln(Events+1) is the logarithm of
the number of conflict events plus 1 per cell and year. Coefficients are reported with spatially clustered standard
errors in parentheses, allowing for a spatial correlation within a 500 km radius of a cell’s centroid and infinite serial
correlation (Conley, 1999). c significant at 10%; b significant at 5%; a significant at 1%.
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B.5 Measurement of weather shocks

This section investigates the measurement of our main source of variations, namely weather shocks.

We consider alternative measures of temperature and also look at precipitations.10 We have used

in the baseline specification the yearly average level of temperature (in degree Celsius) at the cell-

level; conditional on cell fixed effects, this variable captures the effect of deviations in temperature

from a cell’s long-term trend (see equation 1). As a first alternative, the logarithm of temperature

is considered and interacted with the mixed settlement dummy. Results in columns 1 and 2 of

Table B8 are in line with the baseline in terms of magnitude and significance. The coefficient of

mixed settlement in column 2 suggests that a +5% increase in temperature (or about 1.25 degree

Celsius) translates into a +42.1% increase in the likelihood of conflict, relative to the sample mean,

which is quantitatively comparable to the baseline effect (36.3%).

The African continent has a variety of climatic zones and the variation in local temperature across

years differs from one region to another (see right panel, Figure 3). A potential issue in measuring

temperature in levels pertains to assuming a linear impact of temperature on violence, ignoring that

the effect might differ between regions, as some of them may be better adapted to erratic climate

or extreme temperature swings. While any permanent difference across space in the adaptation

to climate is absorbed by the cell fixed effect, explicitly accounting for such local sensitiveness to

temperature is a valuable and complementary approach. With this respect, we consider locally

re-scaled temperature shocks in columns 3 and 4 of Table B8 where each temperature level is di-

vided by its cell-specific (time series) standard deviation. This approach puts less weight on cells

with extreme temperature anomalies. The main coefficient is positive and significant at the 5%

level. In degree Celsius units, the coefficient equals 0.02, which is smaller than the baseline, but re-

mains quantitatively substantial. Overall, our results are robust to alternative temperature indices.

We do prefer temperature in levels, as it fits the African context (heat shocks only) and allows a

straightforward interpretation of regressions coefficients.

Observed precipitation is an alternative candidate for measuring exogenous weather variations at

the local level. However, while the existing literature widely agrees on a positive association between

heat shocks and conflict, the picture is less clear-cut for precipitation. This could be due to various

reasons, including measurement error and a non-monotonic effect of rainfall on conflict. With this

caveat in mind, we test in Table B9 for the role of rainfall and study whether there is a relationship

to temperature in the data, by interacting both indices with each other. The correlation between

average temperature and the sum rainfall per year is -0.06. We first measure rainfall in levels

and as natural logarithm and columns 1 to 4 of Table B9 show that neither rainfall itself affects

conflict, nor does it change the effect of temperature in mixed cells. The remaining columns adopt

alternative measures of rainfall. Columns 5 and 6 consider rainfall anomalies and keep detecting

10Dell, Jones and Olken (2014) provide an overview of the most common weather indices in the literature. The ones
used in this section are (i) relevant in the African context and (ii) address potential concerns about the identification
strategy.
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no effect. Columns 7 and 8 focus on absolute anomalies. The rationale is that both extreme high

(floods) and extreme low (droughts) precipitation may cause economic damage and thus conflict.

Again, the results suggest that rainfall neither drives the effect of temperature on conflict, nor is

relevant on its own. To summarize, while there appears to be no relevant relationship between

precipitation and conflict in the data, the effect of temperature on conflict in mixed cells remains

robust.

Table B8: Alternative Temperature Definitions

Dep. var.: Incident Incident Incident Incident
(1) (2) (3) (4)

ln(T) 0.511a 0.293
(0.172) (0.193)

ln(T) × Mixed settlement 0.757a

(0.252)
ln(T) × Polarization 0.140

(0.205)
Tit/SDi 0.005b 0.003

(0.002) (0.003)
Tit/SDi× Mixed settlement 0.007b

(0.003)
Tit/SDi× Polarization 0.001

(0.003)

Cells 9687 9687 9687 9687
Observations 174366 174366 174366 174366
Cell FE X X X X
Country × Year FE X X X X

Notes: LPM estimated with OLS. An observation is a cell and a year. The sample includes 9687 cells for the years
1997-2014. ln(T) measures the logarithm of temperature; Tit/SDi is temperature normalized by cell standard devi-
ation; Mixed settlement indicates cells with both settlers and nomads; Polarization measures cell-level polarization.
Dependent variables: Incident indicates conflict incidence and is equal one if at least one conflict event occurs in a
cell and year; ln(Events+1) is the logarithm of the number of conflict events plus 1 per cell and year. The regressions
control for cell and country-year fixed effects. Coefficients are reported with spatially clustered standard errors in
parentheses, allowing for a spatial correlation within a 500 km radius of a cell’s centroid and infinite serial correlation
(Conley, 1999). c significant at 10%; b significant at 5%; a significant at 1%.
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Table B9: Controlling for Precipitation

Dep. var.: Incident Incident Incident Incident Incident Incident Incident Incident
(1) (2) (3) (4) (5) (6) (7) (8)

T 0.012 0.010 0.010 0.010
(0.008) (0.008) (0.008) (0.008)

T × Mixed set. 0.027a 0.028a 0.028a 0.028a

(0.010) (0.010) (0.010) (0.010)
T × Polar. 0.007 0.008 0.007 0.007

(0.009) (0.009) (0.009) (0.009)
Rain 0.001 0.005

(0.001) (0.007)
T × Rain -0.000

(0.000)
ln(Rain) -0.003 -0.016

(0.003) (0.020)
T × ln(Rain) 0.001

(0.001)
Rainit−Meani

SDi
0.000 0.010

(0.001) (0.007)

T ×Rainit−Meani
SDi

-0.000

(0.000)
|Rainit−Meani|

SDi
-0.004b -0.006

(0.001) (0.010)

T × |Rainit−Meani|
SDi

0.000

(0.000)

Cells 9687 9687 9516 9516 9492 9492 9492 9492
Observations 174366 174366 171119 171119 170856 170856 170856 170856
Cell FE X X X X X X X X
Country × Year FE X X X X X X X X

Notes: LPM estimated with OLS. An observation is a cell and a year. The sample includes 9687 cells for the years
1997-2014. T measures temperature in degree Celsius; Rain measures total annual precipitation per cell in decime-
ter with data from the Climatic Research Unit; ln(rain) measures the logarithm annual precipitation; Rainit−Meani

SDi

measures the mean deviation in precipitation, divided by a cell’s standard deviation in precipitation (anomaly);
|Rainit−Meani|

SDi
measures the absolute mean deviation in precipitation, divided by a cell’s standard deviation in pre-

cipitation (absolute anomaly); Mixed settlement indicates cells with both settlers and nomads; Polarization measures
cell-level polarization. Dependent variables: Incident indicates conflict incidence and is equal one if at least one
conflict event occurs in a cell and year; ln(Events+1) is the logarithm of the number of conflict events plus 1 per
cell and year. Coefficients are reported with spatially clustered standard errors in parentheses, allowing for a spatial
correlation within a 500 km radius of a cell’s centroid and infinite serial correlation (Conley, 1999). c significant at
10%; b significant at 5%; a significant at 1%.
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B.6 Climate zones, biomes and soil properties

The purpose of this section is to understand whether conflicts in mixed cells can be driven by cli-

matic and vegetation conditions. It is important to distinguish between “climate” and “weather”,

with the first being the long term pattern (distribution) and the latter (in our case temperature)

being a temporal condition (observation) (Dell, Jones and Olken, 2014). Local climatic conditions

are undoubtedly related to resource availability and to whether people pursue a nomadic lifestyle.

To address the role played by climatic conditions, we retrieve information from the ERSI data that

map climate zones according to the Köppen-Geiger classification system. In this system, climate

zones define regions of similar long-term temperature and precipitation patterns. The Sahel zone

for instance is classified as a “semi-arid” band horizontally crossing Africa below the Sahara desert.

In Table B10 we control for climate zone-specific dummy variables, interacted with temperature.

The results show that none of the climate zones appear to be more prone to conflict than others.

Further, the main coefficient in mixed settlement remains unaffected. One limit of this definition of

climate zone is its focus on long-term temperature and rainfall patterns, without considering other

important factors such as soil properties or actual vegetation.

Hence, to draw a clearer picture of the role of actual vegetation, we consult data on biomes. Biomes

are based on the definition of Olson et al. (2001) and issued by the World Wildlife Fund. Biomes

define regions sharing the same predominant vegetation.11 Biome-specific dummy variables are in-

teracted with temperature of each cell-year pair and results are reported in Table B11. While some

biomes appear reactive to temperature-induced violence, the main coefficient of interest remains

comparable to the baseline. In other words, we do not find that vegetative patterns drive conflict

in mixed cells.

One important input factor for vegetation is soil. We derive data on soil properties from the

Harmonized World Soil Database (Nachtergaele et al., 2008). To identify regions subject to soil

stress, cells with an above-median share of poor soil are interacted with temperature.12 Table B12

neither finds a general pattern of soil stress and temperature shocks, nor does controlling for poor

soil affect the main coefficient of interest.

11We follow Henderson et al. (2017) and combine biomes 2 and 3 and biomes 7 and 9, due to their similarity and
because categories 3 and 9 represent very minor shares on a global scale.

12Details on the construction of the variable can be found in the table description and in the channel section.
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Table B12: Correlation with Soil Stress

Dep. var.: Incident Incident Incident Incident Incident Incident
(1) (2) (3) (4) (5) (6)

T 0.008 0.008 0.007 0.013 0.009 0.009
(0.009) (0.009) (0.009) (0.009) (0.009) (0.009)

T × Mixed settlement 0.028a 0.028a 0.028a 0.028a 0.028a 0.028a

(0.010) (0.010) (0.010) (0.010) (0.010) (0.010)
T × Polarization 0.007 0.007 0.007 0.008 0.006 0.007

(0.009) (0.009) (0.009) (0.009) (0.009) (0.009)
T × Poor nutrient availability 0.005

(0.005)
T × Poor nutrient retention cap. 0.005

(0.005)
T × Poor rooting conditions 0.006

(0.005)
T × Poor oxygen availability -0.010

(0.006)
T × High excess salts 0.008

(0.006)
T × High toxicity 0.005

(0.007)

Cells 9655 9655 9655 9655 9655 9655
Observations 173790 173790 173790 173790 173790 173790
Cell FE X X X X X X
Country × Year FE X X X X X X

Notes: LPM estimated with OLS. An observation is a cell and a year. The sample includes 9655 cells for the years
1997-2014. T measures temperature in degree Celsius; Mixed settlement indicates cells with both settlers and nomads;
Polarization measures cell-level polarization; interacted soil indices indicate cells with relative poor soil fertility, with
data from the Harmonized World Soil Database, version 1.2. In detail, an indicator variable takes a value of one
if a cell has an above-median combined land share in classes 4 and 5 in the respective soil quality category (soil
classes of 4 and 5 correspond to soil with very severe limitations and non-soil, such as desert sand). Dependent
variables: Incident indicates conflict incidence and is equal one if at least one conflict event occurs in a cell and year;
ln(Events+1) is the logarithm of the number of conflict events plus 1 per cell and year. The regressions control for
cell and country-year fixed effects. Coefficients are reported with spatially clustered standard errors in parentheses,
allowing for a spatial correlation within a 500 km radius of a cell’s centroid and infinite serial correlation (Conley,
1999). c significant at 10%; b significant at 5%; a significant at 1%.
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B.7 Further robustness exercises

In what follows, we draw on alternative conflict data from the UCDP georeferenced Event Dataset

(Sundberg and Melander, 2013). Unlike ACLED, a death threshold of at least 1 fatality per event

is imposed. Further, only events of active groups are considered, i.e. a group has to be associated

in at least one year with 25 deaths or more. In other words, this dataset focuses on events involving

larger-scale, and possibly more structured actors. Given that part of the farmer-herder violence

may be quite localized and may possibly not involve structured and organized militias, we expect

a weaker effect for the more restrictive UCDP data, for which the sample is downsized to 6,960

incidents. This results in a reduction of the variation in the dependent variable by 50%, compared

to ACLED. Results in Table B13 report positive, although no longer statistically significant coeffi-

cients for mixed settlement cells. The lower variation in the dependent variable is likely to account

for the less precise estimates. Only the last column, the only non-binary (and hence less coarse)

specification, features a highly significant coefficient similar to the baseline.

Further, to demonstrate robustness across data sources with respect to the independent variable,

we next consult temperature data issued by the University of Delaware (UDEL) (Matsuura and

Willmott, 2012). The correlation coefficient between temperature data from CRU (baseline) and

UDEL is 0.93 and significant at the 1% level. The results in Table B14 show a positive and highly

significant coefficient for mixed cells, although less than half the magnitude of the baseline.

The panel analysis so far has relied on exogenous variations in temperature shocks. While desirable

from an identification point of view, the external validity of our findings may be limited, because

farmer-herder violence could be partly rooted in other causes than climatic stress. One way to test

whether farmer-herder conflict can be identified in the absence of weather shocks is to perform a

cross-sectional analysis. We therefore construct a time-invariant dependent variable measuring the

share of sample years with conflict incidence for each cell. Results reported in Table B15 docu-

ment a positive association between mixed settlement and conflict, significant at the 5% level. The

econometric specification exploits variation across cells and controls for country fixed effects. Note

that we can no longer control for cell fixed effects which bears the risk of cell-specific, constant

omitted variable bias. Although statistically less well identified, the results of the cross-section are

in line with the baseline, which reinforces the external validity of our findings.

Another potential worry is that time trends across cells may differ, which could affect the results

in a non-trivial way. We address this concern by replacing cell fixed effects with cell-specific time

trends. Table B16 reports the findings of this sensitivity check. It turns out that our baseline

results continue to hold for this specification.

Last but not least, several regressions with alternative spatial and serial clustering are performed.

In detail, columns 1 to 4 of Panel A in Table B17 allow for a spatial correlation within 50, 100,
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250 and 750 km from a cell’s centroid, respectively, while maintaining infinite serial correlation.

Columns 1 to 4 of Panel B of the same table allow for a serial correlation across 0, 1, 5 and 10

periods, respectively, while maintaining a spatial correlation of 500 km from a cell’s centroid. The

results remain statistically significant in all specifications.

Table B13: Alternative Conflict Data: UCDP GED

Dep. var.: Incident Incident Incident Incident ln(Events+1)
(1) (2) (3) (4) (5)

T 0.018a 0.016b 0.016b 0.015b 0.016
(0.007) (0.006) (0.007) (0.007) (0.015)

T × Mixed settlement 0.013 0.013 0.058a

(0.009) (0.009) (0.021)

T × Polarization 0.003 0.001 0.024
(0.008) (0.009) (0.018)

Cells 9687 9687 9687 9687 9687
Observations 174366 174366 174366 174366 174366
Cell FE X X X X X
Country × Year FE X X X X X

Notes: LPM estimated with OLS. An observation is a cell and a year. The sample includes 9687 cells for the years
1997-2014. T indicates temperature in degree Celsius; Mixed settlement indicates cells with both settlers and nomads;
Polarization measures cell-level polarization. Dependent variables are based on data from the UCDP Georeferenced
Event Dataset (GED): Incident indicates conflict incidence and is equal one if at least one conflict event occurs in a
cell and year; ln(Events+1) is the logarithm of the number of conflict events plus 1 per cell and year. Coefficients
are reported with spatially clustered standard errors in parentheses, allowing for a spatial correlation within a 500
km radius of a cell’s centroid and infinite serial correlation (Conley, 1999). c significant at 10%; b significant at 5%;
a significant at 1%.
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Table B14: Alternative Weather Data: UDEL

Dep. var.: Incident Incident Incident ln(Events+1)
(1) (2) (3) (4)

T (UDEL) 0.003c 0.001 -0.000 0.000
(0.001) (0.004) (0.004) (0.006)

T (UDEL) × Mixed settlement 0.013a 0.013a 0.027a

(0.005) (0.005) (0.009)

T (UDEL) × Polarization 0.004 0.004 0.008
(0.004) (0.004) (0.007)

Cells 7872 7872 7872 7872
Observations 141696 141696 141696 141696
Cell FE X X X X
Country × Year FE X X X X

Notes: LPM estimated with OLS. An observation is a cell and a year. The sample includes 9687 cells for the years
1997-2014. T (UDEL) measures temperature in degree Celsius with data from Willmott, Matsuura, and Legates
(2010) at the University of Delaware (UDEL); Mixed settlement indicates cells with both settlers and nomads;
Polarization measures cell-level polarization. Dependent variables: Incident indicates conflict incidence and is equal
one if at least one conflict event occurs in a cell and year; ln(Events+1) is the logarithm of the number of conflict
events plus 1 per cell and year. Coefficients are reported with spatially clustered standard errors in parentheses,
allowing for a spatial correlation within a 500 km radius of a cell’s centroid and infinite serial correlation (Conley,
1999). c significant at 10%; b significant at 5%; a significant at 1%.

Table B15: Cross-Sectional Specification

Dep. var.: Conflict share Conflict share Conflict share Conflict share
(1) (2) (3) (4)

Mixed settlement 0.030b 0.030b 0.031b 0.032a

(0.012) (0.012) (0.012) (0.012)

Polarization -0.003 0.022 0.022
(0.013) (0.020) (0.018)

Fractionalization -0.044c -0.036c

(0.024) (0.021)

Population density 0.000a

(0.000)

Observations 9687 9687 9687 9687
Country FE X X X X

Notes: LPM estimated with OLS. An observation is a cell. The sample consists of 9687 cells. Mixed settlement
indicates cells with both settlers and nomads; Polarization measures cell-level polarization; Fractionalization mea-
sures cell-level fractionalization; Population density measures the population per km2 with data from the Gridded
Population of the World (GPW), version 4 for the year 2000. Dependent variable: Conflict share measures the share
of years (1997-2014) in which at least one conflict incident occurred in a cell. Coefficients are reported with spatially
clustered standard errors in parentheses, allowing for a spatial correlation within a 500 km radius of a cell’s centroid.
c significant at 10%; b significant at 5%; a significant at 1%.
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Table B16: Controlling for Cell-Specific Time Trends

Dep. var. Incident Incident Incident ln(Events+1)
(1) (2) (3) (4)

T 0.014a 0.013a 0.010b 0.016b

(0.003) (0.004) (0.004) (0.007)

T × Mixed settlement 0.029a 0.028a 0.058a

(0.007) (0.006) (0.013)

T × Polarization 0.013b 0.007 0.024b

(0.006) (0.006) (0.010)

Cells 9687 9687 9687 9687
Observations 174366 174366 174366 174366
Cell FE X X X X
Country × Year FE X X X X

Notes: LPM estimated with OLS. An observation is a cell and a year. The sample includes 9687 cells for the
years 1997-2014. T measures temperature in degree Celsius; Mixed settlement indicates cells with both settlers and
nomads; Polarization measures cell-level polarization. Dependent variables: Incident indicates conflict incidence and
is equal one if at least one conflict event occurs in a cell and year; ln(Events+1) is the logarithm of the number of
conflict events plus 1 per cell and year. The regressions control for cell-specific time trends and country-year fixed
effects. Coefficients are reported with standard errors clustered at the cell level in parentheses. c significant at 10%;
b significant at 5%; a significant at 1%.
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Table B17: Alternative Spatial and Serial Clustering

Dep. var.: Incident Incident Incident Incident
(1) (2) (3) (4)

Panel A. Alternative spatial clustering

T 0.014a 0.014a 0.014b 0.014c

(0.003) (0.004) (0.006) (0.007)

T × Mixed settlement 0.029a 0.029a 0.029a 0.029a

(0.007) (0.008) (0.009) (0.010)

Spatial clustering 50 km 100 km 250 km 750 km

Panel B. Alternative serial clustering

T 0.014b 0.014b 0.014b 0.014b

(0.007) (0.007) (0.007) (0.007)

T × Mixed settlement 0.029a 0.029a 0.029a 0.029a

(0.008) (0.009) (0.009) (0.009)

Serial clustering 0 periods 1 period 5 periods 10 periods

Cells 9687 9687 9687 9687
Observations 174366 174366 174366 174366
Cell FE X X X X
Country × Year FE X X X X

Notes: LPM estimated with OLS. An observation is a cell and a year. The sample includes 9687 cells for the
years 1997-2014. T measures temperature in degree Celsius; Mixed settlement indicates cells with both settlers and
nomads; Polarization measures cell-level polarization. Dependent variables: Incident indicates conflict incidence and
is equal one if at least one conflict event occurs in a cell and year; ln(Events+1) is the logarithm of the number of
conflict events plus 1 per cell and year. The regressions control for cell and country-year fixed effects. Coefficients
are reported with spatially clustered standard errors in parentheses. Panel A tests alternative spatial clustering
specifications, while maintaining infinite serial correlation. Colum1-4 allow for a spatial correlation within a 50, 100,
250 and 750 km radius of a cell’s centroid, respectively. Panel B tests alternative serial clustering specifications, while
maintaining a spatial correlation within a 500 km radius of a cell’s centroid. Colum1-4 allow for a serial correlation
of 0, 1, 5 and 10 years, respectively. c significant at 10%; b significant at 5%; a significant at 1%.
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C Mechanisms at work

Below are depicted a series of Figures and Tables investigating mechanisms at work and channels

of transmission. They are all discussed in detail in the main text under section 4.

Figure C6: The Agricultural Frontier: Fringe Cells

Source: Esri, Maxar, GeoEye, Earthstar Geographics, CNES/Airbus DS, USDA,
USGS, AeroGRID, IGN, and the GIS User Community

Agricultural Frontier
Fringe cells
Mixed settlement
fishnet1_sans_africa2

Notes: This graph depicts “Fringe” cells, defined as regions with an above-median share of agricultural land and an
above-median degree of infertile land.
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Figure C7: Overlap between GREG and Murdock ethnic group boarder data
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Notes: The graph predicts the location of the historic ethnic homeland of nomads (Murdock), dating back up to 5,000
years, from the location of nomads in the 1960s (GREG). The red vertical line indicates the border between nomadic
and sedentary groups, based on data from GREG. Negative values on the horizontal axis measure the distance to
nomadic homeland (as seen from settler homeland).

Table C1: Persistence of Production Technologies

Nomads Mixed settlement Settlers Total

Crop suitability (cell sh./human per km2) 5.974 17.042 24.887 16.865
(16.439) (24.029) (27.146) (24.900)

Infertile land (cell share) 66.799 34.304 2.390 30.331
(42.605) (42.322) (12.620) (43.238)

Cattle (# animals/person) 12.413 353.163 36.433 62.142
(170.572) (6087.183) (849.829) (2100.291)

Goat 17.668 274.962 23.102 48.382
(226.908) (3790.582) (419.822) (1292.721)

Sheep 29.775 219.382 17.537 43.669
(594.322) (3255.092) (262.105) (1144.596)

Notes: The unit of observation is a cell. The table provides summary statistics on the underlying production tech-
nologies. Columns 1-3 divide cells along mobility patterns, based on settlement mobility data from Murdock’s Ethno-
graphic Atlas matched onto geolocation information from the Geo-referencing of Ethnic Groups dataset (GREG).
Column 1 depicts the average (standard deviation) of cells inhabited by nomads only; column 2 identifies cells in-
habited by at least one settled and at least one nomadic group (”Mixed settlement”); column 3 cells inhabited by
settlers only. Column 4 considers the complete sample. Data on crop suitability and on infertile land are derived from
Globcover categories 11, 14, 20 30 and 200, respectively; population data is derived from the Gridded Population
of the World (GPW), version 4; data on cattle density is derived from the Gridded Livestock of the World (GLW3)
dataset by Fao for the year 2005 and available for Sub-Saharan Africa; data is accessed via HarvestChoice.
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Table C2: Competition versus Culture, Alternative Data and Reference Years

Dep. var.: Incident Incident Incident Incident ln(Events+1)
(1) (2) (3) (4) (5)

Panel A. GLC-SHARE data for 2014

T 0.013a 0.008b 0.010a 0.006 0.010
(0.003) (0.004) (0.003) (0.004) (0.007)

T × Mixed settlement 0.027a 0.023a 0.009 0.008 0.006
(0.007) (0.006) (0.007) (0.007) (0.014)

T × Fringe (1992) 0.031a 0.019a 0.019a 0.034a

(0.006) (0.006) (0.006) (0.010)

T × Mixed set. × Fringe (1992) 0.046a 0.046a 0.129a

(0.017) (0.016) (0.035)

T × Polarization 0.007 0.024b

(0.006) (0.010)

Cells 9353 9353 9353 9353 9353
Observations 168354 168354 168354 168354 168354

Panel A. SAGE data for 1992

T 0.014a 0.008b 0.010a 0.006 0.012
(0.003) (0.003) (0.003) (0.004) (0.007)

T × Mixed settlement 0.029a 0.026a 0.013b 0.011c 0.015
(0.007) (0.006) (0.006) (0.006) (0.013)

T × Fringe (2014) 0.036a 0.023a 0.023a 0.030a

(0.006) (0.006) (0.006) (0.009)

T × Mixed set. × Fringe (2014) 0.052a 0.052a 0.148a

(0.017) (0.017) (0.037)

T × Polarization 0.008 0.026b

(0.006) (0.010)

Cells 9687 9687 9687 9687 9687
Observations 174366 174366 174366 174366 174366

Cell FE X X X X X
Country × Year FE X X X X X

Notes: LPM estimated with OLS. An observation is a cell and a year. Fringe indicates cells with an above median
share of agricultural land (total of crop and grass land) and an above-median share of bare soil. This table defines
Fringe with alternative data sources for different reference years. Panel A: data on the agricultural extent in 1992
is derived from the SAGE data set by the Center for Sustainability and the Global Environment at the University
of Wisconsin-Madison. Panel B: data on the agricultural extent and on bare soil extent in 2014 is derived from the
Global Land Cover SHARE (GLC-SHARE) database by Fao. T measures temperature in degree Celsius; Mixed
settlement indicates cells with both settlers and nomads; Polarization measures cell-level polarization. Dependent
variables: Incident indicates conflict incidence and is equal one if at least one conflict event occurs in a cell and year;
ln(Events+1) is the logarithm of the number of conflict events plus 1 per cell and year. The regressions control for
cell and country-year fixed effects. Coefficients are reported with spatially clustered standard errors in parentheses,
allowing for a spatial correlation within a 500 km radius of a cell’s centroid and infinite serial correlation (Conley,
1999). c significant at 10%; b significant at 5%; a significant at 1%.
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Table C3: Competition versus Culture, Cattle Data

Dep. var.: Incident Incident Incident Incident ln(Events+1)
(1) (2) (3) (4) (5)

T 0.008 0.005 0.006 0.004 0.003
(0.008) (0.008) (0.008) (0.010) (0.016)

T × Mixed settlement 0.023b 0.019b 0.008 0.007 0.013
(0.010) (0.009) (0.008) (0.009) (0.018)

T × Fringe (Cattle) 0.028b 0.014 0.015 0.024
(0.012) (0.011) (0.011) (0.018)

T × Mixed set. × Fringe (Cattle) 0.048b 0.047b 0.074b

(0.023) (0.023) (0.036)

T × Polarization 0.006 0.018
(0.010) (0.019)

Cells 7705 7705 7705 7705 7705
Observations 138690 138690 138690 138690 138690
Cell FE X X X X X
Country × Year FE X X X X X

Notes: LPM estimated with OLS. An observation is a cell and a year. The sample includes 9687 cells for the years
1997-2014. Fringe indicates cells with an above-median share of crop and bare land and above-median cattle density.
Data on cattle density is derived from the Gridded Livestock of the World (GLW3) dataset by Fao for the year 2005
and available for Sub-Saharan Africa; data is accessed via HarvestChoice. Data on crop and bare land cover is derived
from Globcover 2009, categories 11 and 14. T measures temperature in degree Celsius; Mixed settlement indicates
cells with both settlers and nomads; Polarization measures cell-level polarization. Dependent variables: Incident
indicates conflict incidence and is equal one if at least one conflict event occurs in a cell and year; ln(Events+1) is the
logarithm of the number of conflict events plus 1 per cell and year. The regressions control for cell and country-year
fixed effects. Coefficients are reported with spatially clustered standard errors in parentheses, allowing for a spatial
correlation within a 500 km radius of a cell’s centroid and infinite serial correlation (Conley, 1999). c significant at
10%; b significant at 5%; a significant at 1%.
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Table C4: Competition versus Culture, Soil Qualities

Dep. var.: Incident Incident Incident Incident Incident Incident
(1) (2) (3) (4) (5) (6)

T 0.008 0.009 0.008 0.014 0.011 0.011
(0.008) (0.008) (0.008) (0.008) (0.008) (0.008)

T × Mixed settlement 0.022b 0.018c 0.012 0.026b 0.018c 0.023b

(0.010) (0.010) (0.009) (0.011) (0.010) (0.010)
T × Polarization 0.008 0.008 0.007 0.007 0.007 0.007

(0.009) (0.009) (0.009) (0.009) (0.009) (0.009)
T × Fringe (Poor nutrient av.) 0.009

(0.008)
T × Mix × Fringe (Poor nutrient av.) 0.039

(0.026)
T × Fringe (Poor nutrient retention) 0.006

(0.007)
T × Mix × Fringe (Poor nutrient ret.) 0.053b

(0.022)
T × Fringe (Poor rooting conditions) 0.012

(0.008)
T × Mix × Fringe (Poor rooting cond.) 0.060a

(0.019)
T × Fringe (Poor oxygen to roots) -0.018b

(0.007)
T × Mix × Fringe (Poor oxygen to roots) 0.014

(0.021)
T × Fringe (High excess salts) -0.009

(0.010)
T × Mix × Fringe (High excess salts) 0.087a

(0.032)
T × Fringe (High toxicity) -0.014

(0.012)
T × Mix × Fringe (High toxicity) 0.079c

(0.043)
Constant 0.000 0.000 0.000 0.000 0.000 0.000

(0.001) (0.001) (0.001) (0.001) (0.001) (0.001)

Cells 9655 9655 9655 9655 9655 9655
Observations 173790 173790 173790 173790 173790 173790
Cell FE X X X X X X
Country × Year FE X X X X X X

Notes: LPM estimated with OLS. An observation is a cell and a year. Fringe indicates cells with an above-median
share of agricultural land and constrained soil qualities. Data on agricultural land is from Globcover 2009. Data on
soil qualities is from the Harmonized World Soil Database, version 1.2. Constrained soil quality indicates cells with
an above-median combined land share in classes 4 and 5 in the respective soil quality category (soil classes of 4 and 5
correspond to soil with very severe limitations and non-soil, such as desert sand). T measures temperature in degree
Celsius; Mixed settlement indicates cells with both settlers and nomads; Polarization measures cell-level polarization;
Dependent variables: Incident indicates conflict incidence and is equal one if at least one conflict event occurs in a
cell and year; ln(Events+1) is the logarithm of the number of conflict events plus 1 per cell and year. The regressions
control for cell and country-year fixed effects. Coefficients are reported with spatially clustered standard errors in
parentheses, allowing for a spatial correlation within a 500 km radius of a cell’s centroid and infinite serial correlation
(Conley, 1999). c significant at 10%; b significant at 5%; a significant at 1%.
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Table C5: Competition versus Culture, Extended Version

Dep. var.: Incident Incident Incident Incident ln(Events+1)
(1) (2) (3) (4) (5)

T 0.014a 0.008 0.010c 0.006 0.011
(0.003) (0.005) (0.005) (0.006) (0.009)

T × Mixed settlement 0.029a 0.023a 0.010 0.009 0.026c

(0.007) (0.006) (0.012) (0.012) (0.014)

T × Agriculture 0.005 0.005 0.006 0.009
(0.005) (0.005) (0.005) (0.007)

T × Barren -0.004 -0.004 -0.004 -0.012
(0.006) (0.006) (0.006) (0.008)

T × Fringe 0.044a 0.023b 0.023b 0.052a

(0.010) (0.010) (0.010) (0.016)

T × Mix set. × Agric. -0.007 -0.006 -0.027
(0.015) (0.015) (0.025)

T × Mix set. × Barren 0.004 0.003 -0.011
(0.015) (0.015) (0.023)

T × Mixed set. × Fringe 0.066a 0.066a 0.183a

(0.025) (0.025) (0.048)

T × Polarization 0.008 0.024b

(0.006) (0.010)

Cells 9687 9687 9687 9687 9687
Observations 174366 174366 174366 174366 174366
Cell FE X X X X X
Country × Year FE X X X X X

Notes: LPM estimated with OLS. An observation is a cell and a year. The sample includes 9687 cells for the years
1997-2014. Fringe indicates cells with an above median share of agricultural land (total of crop and grass land) and
an above-median share of bare soil; data is derived from Globcover 2009, and correspond to categories 11, 14 ,20, 30
and 200, respectively. Agriculture indicates cells with an above-median share of agricultural land; Barren indicates
cells with an above-median share of bare land. T measures temperature in degree Celsius; Mixed settlement indicates
cells with both settlers and nomads; Polarization measures cell-level polarization. Dependent variables: Incident
indicates conflict incidence and is equal one if at least one conflict event occurs in a cell and year; ln(Events+1) is the
logarithm of the number of conflict events plus 1 per cell and year. The regressions control for cell and country-year
fixed effects. Coefficients are reported with spatially clustered standard errors in parentheses, allowing for a spatial
correlation within a 500 km radius of a cell’s centroid and infinite serial correlation (Conley, 1999). c significant at
10%; b significant at 5%; a significant at 1%.
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Table C6: Climate-induced Mobility and Conflict, Descriptive Statistics

Nomad Settler Total Mean difference (Nomad - Settler)

T in homeland (centroid) 28.687 27.308 28.242 1.379a

(1.457) (2.925) (2.137) (0.388)

Distance to homeland 233.643 419.632 293.687 -185.989b

(293.170) (632.131) (438.699) (81.919)

Event in other settlement cat. 0.528 0.119 0.396 0.408a

(0.404) (0.302) (0.419) (0.071)

Event in own homeland 0.768 0.345 0.631 0.423a

(0.334) (0.425) (0.415) (0.069)

Notes: The unit of observation is an actor. Columns 1-3: Summary statistics. Columns 1-2 divide cells along mobility
patterns. Column 1 and 2 depict the average (standard deviation) nomadic and settled rebel groups, respectively.
Column 3 considers the complete sample. Column 4 performs a difference of mean test between nomads and settler,
with the following significant levels: c significant at 10%; b significant at 5%; a significant at 1%.
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Table C7: Climate-induced Mobility and Conflict, Alternative Specifications

Dependent variable: Distance to homeland (centroid, km)

Fighting group: All Settlers Nomads

(1) (2) (3) (4) (5) (6)

Panel A. Restricting dependent variable to < 500 km

T in homeland (centroid) 2.715b 1.489 9.537a 34.745a 19.910a 22.962a

(1.371) (1.471) (3.654) (9.460) (5.911) (6.557)

Events 1615 698 917 96 478 448
Groups 120 35 85 30 61 60

Panel B. Spatially clustered standard errors

T in homeland (centroid) 5.873b 0.839 14.840a 41.879a 24.372a 27.351a

(2.444) (2.381) (5.608) (7.952) (6.579) (7.987)

Events 1904 895 1009 98 509 488
Groups 127 41 86 30 63 63

Panel C. Event level regressions

T in homeland (centroid) 2.172 -3.175 18.234a 45.535a 29.348a 31.166a

(2.326) (2.286) (5.466) (8.879) (7.212) (9.107)

Events 4406 2148 2258 127 1134 1102
Groups 127 41 86 30 63 63

Group FE X X X X X X
Country × Year FE X X X X X X
Fight over resources only X
Conflict location: Agri. (M) X
Conflict location: Water (M) X

Notes: Panel A: as baseline table, with the difference that the maximal distance between conflict event and rebel
groups’ homeland is restricted to 500 km (instead of 1000km). Panel B: as baseline table, with the difference that the
standard errors are spatially clustered, allowing for a spatial correlation within a 500 km radius of a cell’s centroid and
infinite serial correlation (Conley, 1999). Panel C: as baseline table, with the difference that the unit of observation
is a conflict event. As a results, a single actor potentially could be involved in multiple conflict events in the same
location and year. The sample is limited to Sahel countries. Information on conflict participants is derived from
ACLED and matched on the ethnic group level to settlement mobility information from Murdock’s Ethnographic
Atlas. As a result, conflict participants’ mode of settlement can be identified. Multiple events of the same group
within the same 1 × 1 kilometer cell and year are coded as a single observation. T in homeland (centroid) measures
temperature in degree Celsius in the geographic center of a fighting group’s nearest homeland. A group’s homeland
is defined according to the specified ethnic group location in GREG. Column 1 considers all conflict events, column
2 only considers conflict events involving a settler group and columns 3-6 only consider conflict events involving a
nomadic group. Column 4 restricts the subsample of nomadic event further to events including at least one of the
following key words: land dispute, dispute over land, control of land, over land, clash over land, land grab, farm
land, land invaders, land invasion, land redistribution, land battle, over cattle and land, invade land, over disputed
land, over a piece of land, herd, pastoral, livestock, cattle, grazing, pasture, cow, cattle, farm, crop, harvest. Column
5 (6) restricts the subsample of nomadic events further to events taking place in cells with an above-median share
of agricultural (water), with data from Global Land Cover SHARE by Fao. The dependent variable measures the
distance between a conflict event and the center of a participating group’s homeland. The regressions control for
group and country-year fixed effects. Standard errors are reported in parentheses. c significant at 10%; b significant
at 5%; a significant at 1%.
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D Resilience through Formal Institutions and Policies

Below are presented a several Tables studying the impact of policies. They are all discussed in

detail in the main text under section 5.

Table D1: Resilience Through Formal Institutions and Policies, Alternative Variables

(1) (2) (3)
Incident Incident Incident

T 0.033a 0.016c 0.036a

(0.012) (0.008) (0.013)
T × Mixed settlement 0.032b 0.031a 0.035b

(0.016) (0.010) (0.017)
T × Property rights -0.023 -0.024

(0.015) (0.016)
T × Mixed set. × Property rights -0.034c -0.037c

(0.020) (0.021)
T × Independent Judiciary -0.010 -0.009

(0.014) (0.014)
T × Mixed set. × Independent Judiciary -0.023 -0.002

Cells 8479 9230 8134
Observations 152622 166140 146412
Sample share - interaction group .51 .12 .55
Mix share - interaction group .11 .07 .11
Cell FE X X X
Country × Year FE X X X

Notes: LPM estimated with OLS. An observation is a cell and a year. The table tests heterogeneity across relevant
country-wide institutional features The sample includes the years 1997-2014 and the number of included cells in each
column varies with the data availability of the test heterogeneity. Column 1 tests the role of property rights with
data from the Economic Freedom of the World Dataset (only post sample data available) and column 2 considers
judiciary independence (pre-sample) with data from Political Constraints Database. In both cases, data is accessed
via the Quality of Government data collection and a binary variable is coded indicating above-median levels in the
respective variable. T measures temperature in degree Celsius; Mixed settlement indicates cells with both settlers
and nomads. Dependent variable: Incident indicates conflict incidence and is equal one if at least one conflict event
occurs in a cell and year. The regressions control for cell and country-year fixed effects. Coefficients are reported
with spatially clustered standard errors in parentheses, allowing for a spatial correlation within a 500 km radius of a
cell’s centroid and infinite serial correlation (Conley, 1999). c significant at 10%; b significant at 5%; a significant at
1%.
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Table D2: Resilience Through Formal Institutions and Policies, Border Analysis

Dependent variable: Incident Incident Incident Incident Incident
(1) (2) (3) (4) (5)

Panel A. 75 km buffer around national borders
T 0.013 0.006 0.053a 0.024b 0.036c

(0.012) (0.009) (0.015) (0.009) (0.020)
T × Mixed settlement 0.034b 0.027b 0.018 0.024b 0.044c

(0.014) (0.012) (0.018) (0.011) (0.025)
T × High polity -0.005 0.019

(0.015) (0.017)
T × Mixed set. × High polity -0.050b -0.033

(0.021) (0.022)
T × High land dispute resolution 0.029 0.021

(0.019) (0.017)
T × Mixed set. × High land dispute resolution -0.057b -0.034

(0.022) (0.024)
T × Low corruption -0.061a -0.062a

(0.017) (0.019)
T × Mixed set. × Low corruption -0.007 0.007

(0.022) (0.025)
T × Federal states -0.026 -0.008

(0.021) (0.020)
T × Mixed set. × Federal sates -0.099b -0.078c

(0.039) (0.043)
Cell FE / Country × Year FE X X X X X

Panel B. 75 km buffer around national borders, including border × year fixed effects
T -0.021 -0.002 0.007 -0.006 -0.011

(0.014) (0.011) (0.013) (0.010) (0.024)
T × Mixed settlement 0.033a 0.021c 0.036b 0.031a 0.042c

(0.012) (0.012) (0.015) (0.010) (0.023)
T × High polity 0.019 0.027

(0.016) (0.019)
T × Mixed set. × High polity -0.041b -0.018

(0.019) (0.022)
T × High land dispute resolution 0.001 -0.000

(0.017) (0.019)
T × Mixed set. × High land dispute resolution -0.026 0.001

(0.020) (0.023)
T × Low corruption -0.021 -0.016

(0.016) (0.021)
T × Mixed set. × Low corruption -0.030c -0.019

(0.018) (0.024)
T × Federal states 0.007 0.004

(0.025) (0.025)
T × Mixed set. × Federal sates -0.100a -0.082b

(0.036) (0.040)
Cell FE / Country × Year FE / Border × Year FE X X X X X

Cells 2897 2997 3319 3319 2638
Observations 52146 53946 59742 59742 47484
Sample share - interaction group .44 .42 .51 .1 .93
Mix share - interaction group .1 .1 .1 .11 .14

Notes: For details, consult the notes of Table 5. The sample is limited to cells within a 75 km buffer around national
borders. The distance is measured between the centroid of a cell and a border. Panel B additionally controls for
border-year specific fixed effects. In cases where cells contain multiple borders, a cell is assigned to the border closest
to its centroid.
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Table D3: Resilience Through Formal Institutions and Policies, Border Analysis, Larger Buffer

Dependent variable: Incident Incident Incident Incident Incident
(1) (2) (3) (4) (5)

Panel A. 120 km buffer around national borders
T 0.014 0.005 0.045a 0.021a 0.040b

(0.010) (0.008) (0.013) (0.008) (0.019)
T × Mixed settlement 0.037a 0.025b 0.022 0.026a 0.043c

(0.012) (0.010) (0.017) (0.010) (0.023)
T × High polity -0.007 0.010

(0.012) (0.015)
T × Mixed set. × High polity -0.053a -0.038b

(0.018) (0.019)
T × High land dispute resolution 0.027c 0.024c

(0.016) (0.014)
T × Mixed set. × High land dispute resolution -0.046b -0.031

(0.019) (0.021)
T × Low corruption -0.050a -0.061a

(0.015) (0.017)
T × Mixed set. × Low corruption -0.010 0.006

(0.020) (0.022)
T × Federal states -0.023 -0.005

(0.019) (0.019)
T × Mixed set. × Federal sates -0.085b -0.059

(0.033) (0.036)
Cell FE / Country × Year FE X X X X X

Panel B. 120 km buffer around national borders, including border × year fixed effects
T -0.013 0.003 0.009 -0.001 0.002

(0.013) (0.010) (0.012) (0.009) (0.022)
T × Mixed settlement 0.035a 0.020b 0.035b 0.029a 0.041c

(0.011) (0.009) (0.014) (0.009) (0.021)
T × High polity 0.012 0.011

(0.014) (0.018)
T × Mixed set. × High polity -0.046a -0.027

(0.016) (0.019)
T × High land dispute resolution -0.002 -0.006

(0.015) (0.017)
T × Mixed set. × High land dispute resolution -0.026 -0.010

(0.018) (0.020)
T × Low corruption -0.016 -0.010

(0.014) (0.018)
T × Mixed set. × Low corruption -0.028c -0.013

(0.017) (0.022)
T × Federal states 0.007 0.004

(0.023) (0.024)
T × Mixed set. × Federal sates -0.081a -0.052

(0.031) (0.034)
Cell FE / Country × Year FE / Border × Year FE X X X X X

Cells 2897 2997 3319 3319 2638
Observations 52146 53946 59742 59742 47484
Sample share - interaction group .44 .42 .51 .1 .93
Mix share - interaction group .1 .1 .1 .11 .14

Notes: For details, consult the notes of Table 5. The sample is limited to cells within a 120 km buffer around national
borders. The distance is measured between the centroid of a cell and a border. Panel B additionally controls for
border-year specific fixed effects. In cases where cells contain multiple borders, a cell is assigned to the border closest
to its centroid.
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