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a b s t r a c t

We develop an exchange rate target zone model with finite exit time and non-Gaussian tails. We
show how the tails are a consequence of time-varying investor risk aversion, which generates
mean-preserving spreads in the fundamental distribution. We solve explicitly for stationary and non-
stationary exchange rate paths, and show how both depend continuously on the distance to the exit
time and the target zone bands. This enables us to show how central bank intervention is endogenous
to both the distance of the fundamental to the band and the underlying risk. We discuss how the
feasibility of the target zone is shaped by the set horizon and the degree of underlying risk, and we
determine a minimum time at which the required parity can be reached. We prove that increases in
risk beyond a certain threshold can yield endogenous regime shifts where the ‘‘honeymoon effects’’
vanish and the target zone cannot be feasibly maintained. None of these results can be obtained by
means of the standard Gaussian or affine models. Numerical simulations allow us to recover all the
exchange rate densities established in the target zone literature. The generality of our framework has
important policy implications for modern target zone arrangements.

© 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

The exchange rate target zone literature, pioneered by Krug-
an (1991), highlights the role that market expectations con-
erning fundamentals play in shaping exchange rate movements
nd is based on a stochastic flexible price monetary model in
ontinuous time. Given its assumptions of perfect credibility and
aussian fluctuations in the fundamental, it implies that central
ankers need only intervene marginally at the bounds of the
arget zone or allow honeymoon effects to automatically stabilize
he exchange rate. The European Monetary System (EMS) and
he Exchange Rate Mechanism (ERM), which existed from 1979
ntil participating countries adopted the Euro in 1999, provided
natural test bed for this theory. The target zone model has
rovided the intellectual justification for the choice of a nominal
nchor for countries transitioning to a monetary union.
While the use of target zone exchange rate regimes became

ess common after the 1990s, their practice continues to this
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day, with the ERM-II target zone mechanism being an interme-
diate step to Euro adoption for new member states.1 It is likely
that future new member states will also participate in the ERM
process, making target zone modeling of current relevance. In
its review of the ERM-II, the European Central Bank (ECB) notes
that participation in the target zone may involve both positive
and negative regime shifts driven by changing expectations and
economic incentives of international and local investors, as well
as those of local policy authorities (Dorrucci et al., 2020). This
mechanism can be observed in the ERM-II experiences of coun-
tries around the Great Financial Crisis (GFC). ERM-II countries
experienced much higher capital flow volatility and associated
credit boom-bust cycles as compared to similar countries that had
a peg to the Euro but did not join the ERM. Entering a target zone
with a ‘‘credible’’ commitment to join the Euro has led to a shift in
expectations about country (currency) risk, which drifted towards
converging with the European Monetary Union. The relaxation
of the external borrowing constraint through the ERM process
generated a capital flow boom (Fornaro, 2020). However, this
process of monetary integration is subject to downside risks as

1 As of writing this paper, Bulgaria and Denmark are in the ERM-II target-
one. Bulgaria intends to adopt the Euro whereas Denmark has a special opt-out
lause from Euro adoption.
rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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well, as unanticipated changes in global investor risk aversion
may lead to destabilizing capital flow reversals.

Existing attempts at modeling fundamental risk in a target
one involve either Gaussian fluctuations, the addition of ad-hoc
umps, or deviations from rational expectations. These features
re unable to capture the risk-driven regime shift dynamics as-
ociated with target zone mechanisms such as the ERM-II which
nvolves the finite time based adoption of a larger target currency.
n this paper, we study the dynamics of an exchange rate target
one with a finite-time exit to a target currency, whilst account-
ng formally for the risk generated by the convergence process.
e show how this source of risk destabilizes the exchange rate

undamentals and generates extra pressure to move towards the
oundary. We do so by assuming that the risk aversion of foreign
nvestors is subject to risk-on and risk-off shocks, which generate
country-risk premium in the uncovered interest rate parity

ondition via a sudden bonanza or sudden stop of capital flows
uring the target zone process. We show how this mechanism
ntroduces the dynamic equivalent of mean-preserving spreads
n the fundamental process, which generates non-Gaussian tails
n the exchange rate distribution. We are able to solve analyti-
ally the partial differential equation with reflecting boundaries
ssociated with the exchange rate path within the target zone, by
eans of an eigenfunction expansion and Sturm–Liouville theory.
e make four main contributions to the literature.
First, we formally document the presence of ‘‘soft’’ boundaries,

hich determine central bank interventions by means of the
xchange rate’s distance to the bands as well as the intensity of
xternal risk. We find that the underlying dynamics are similar to
he phenomena famously described by Kac (1966), who studied
hether one could ‘‘hear the shape of a drum’’ if all the eigen-
alues of the corresponding eigenvalue problem are known. In
ur framework, the shape of a target zone can indeed be ‘‘heard’’,
hen the exchange rate is pushed to the sides of the target
and by an additional external destabilizing force: intuitively,
his corresponds to the acoustic difference between striking a
ense membrane (large shifts in risk aversion) versus a loose
ne. External risk is not simply subsumed in the variance of
diosyncratic fluctuations in the fundamental, but emerges as a
on-Gaussian, destabilizing force. The resulting mean-preserving
preads allow one to effectively endogenize the bands, providing
n explanation for the existence of smaller de facto bands within
arger de jure target bands, as well as the possibility of marginal
nd intra-marginal interventions in a target zone without as-
uming a specific foreign exchange intervention strategy. This
echanism has been shown empirically to exist and has been
escribed heuristically (Lundbergh and Teräsvirta, 2006; Bessec,
003), but was heretofore not formalized precisely.
Our second main contribution lies in our being able to char-

cterize the minimum time for which a target zone needs to
e maintained for the home currency to successfully exit to the
arget currency. We do so by studying the relaxation time of
he exchange rate process, which is the inverse of the distance
etween 0 and the smallest eigenvalue in the spectrum, a quan-
ity also known as the spectral gap. The relaxation time is the
inimum required time for agents to ‘‘feel’’ the first effects of

he home central bank’s actions aimed at reducing fluctuations
f the exchange rate. It is also the minimum time necessary for
gents to update their priors accurately, generating self-fulfilling
xpectations that create the honeymoon effect for future central
ank actions. This result allows us to characterize precisely the
easibility of a target zone, which corresponds to the central bank
eing able to reach the set central parity with the agreed bands
t the chosen time horizon. We characterize analytically the
inimum required time necessary for the parity to be reached:

ny shorter time horizon chosen by the central bank would be

2

unfeasible. Our model further shows that it is mandatory to
study non-stationary dynamics in order to determine whether the
chosen horizon is feasible. In contrast, existing models assume
away the problem by positing perfect feasibility and stationary
dynamics.

Third, we show how large shocks to investor risk aversion,
leading to proportional increases in risk and non-Gaussian tails
in the fundamental distribution, can potentially yield a regime
shift in the spectrum once a certain risk threshold is crossed.
This shift does not allow anymore honeymoon effects to arise
around the target zone bands, since the increase in risk destabi-
lizes the exchange rate dynamics to the point that smooth-fitting
procedures around the band cannot be applied by central bank
interventions and the target zone becomes untenable. Beyond
a critical threshold of risk, therefore, the target zone effectively
cannot exist, and we show how this threshold is bounded below
by the reciprocal of the target zone bandwidth. This implies that
the central bank has to widen the target zone bands in order
to maintain control of the exchange rate. This result can only
be explained in standard models by explicitly assuming ad hoc
endogenous devaluation risk.

Finally, our framework is very general: we are able to show
how the model can fit a wide range of scenarios regarding fea-
sibility and control. We are able to replicate by Monte Carlo
simulations the various exchange rate densities predicted by the
established target zone literature.

The paper is organized as follows. Section 2 provides a brief
review of the existing literature. Section 3 presents the model
and its solution. Section 4 discusses the connection between
risk, target zone width and feasibility, presents the emergence
of regime shifts once a critical threshold of risk is reached and
shows the generality of our framework via numerical simulations.
Section 5 discusses the policy implications of our model and its
real-world applications, while Section 6 concludes and presents
an agenda for future research.

2. Existing literature

The literature begins with the seminal paper by Krugman
(1991), which hinges on the assumptions of perfect credibility
and Gaussian fluctuations in the fundamental process, giving rise
to an U-shaped distribution of the exchange rate and a negative
relationship between the interest rate differential and exchange
rate volatility. The exchange rate is therefore expected to spend
most of its time near the bands of the zone, and due to the hon-
eymoon effect the central bank only has to intervene marginally
at the bands. There has been scant empirical support for this
framework, however. In particular, both the implied U-shaped
distribution and the negative correlation between the exchange
rate and the interest rate differential have found little counterpart
in the data, as shown by Mathieson et al. (1991), Meese and Rose
(1991) and Svensson (1991).

This result led to the development of the so-called second-
generation models, starting with Bertola and Caballero (1992)
and Bertola and Svensson (1993), up to Tristani (1994) and
Werner (1995) who study endogenous realignment risk. Second-
generation models focus on allowing the fundamental process
to be controlled intramarginally, thus generating a hump-shaped
distribution where the exchange rate spends most of its time
around central parity. Dumas and Delgado (1992) show that
the honeymoon effects are considerably weakened when cen-
tral banks intervene intramarginally. Serrat (2000) generalizes
the target zone framework to a multilateral setting, and shows
how spillovers from third-country interventions can increase
conditional volatilities compared to free-float regimes. Bekaert
and Gray (1998) and Lundbergh and Teräsvirta (2006) test the
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implications of the second-generation models, and find mixed
evidence with a slight tendency towards the intramarginal in-
terventions hypothesis. Ajevskis (2011) extends the basic target
zone model to a finite termination time setting while maintaining
the other assumptions of the original model.

Recently, Studer-Suter and Janssen (2017) and Lera and Sor-
ette (2016, 2018 and 2019) find empirical evidence for the target
one model for the EUR/CHF floor target zone set by the Swiss
ational Bank between 2011 and 2015, the latter mapping the
rugman model to the option chain. In particular, Lera and Sor-
ette (2015) show how the standard model can hold in specific
ases, such as the EUR/CHF target zone, because of a sustained
ressure that continuously pushes the exchange rate closer to
he bounds of the target zone, which the central bank tries to
ounteract. Such pressure is a common feature of target zone
rrangements: Rey (2015) famously argued that the global finan-
ial cycles stemming from the United States generate additional
isks for central banks targeting a nominal anchor. Furthermore,
opinath and Stein (2019) and Kalemli-Özcan (2019) show how
S monetary policy shocks can affect the exchange rate of a
ountry with minimal USD exposure because of the dominant na-
ure of the USD as a trade currency, implying that the alignment
rocess generated by a target zone naturally generates additional
isk.

. The model

In this paper we want to characterize a modern target zone
echanism in which the fundamental process can be destabilized
y external risk factors, generating thick non-Gaussian tails in
ts distribution. Inclusion of these characteristics in the analysis
s made necessary by the presence of risk-averse investors who
ave time varying risk aversion modulated by the global finan-
ial cycle. Entering a target zone increases the capital market
ntegration of the country in question which exposes countries’
undamentals to an increased share of global and regional risk
actors.2

.1. Risk aversion shocks

The target zone framework depends critically on the uncov-
red interest rate parity (UIP) condition, with the currency in
he target zone converging to the target nominal interest rate at
ime of exit to the currency union. The UIP condition requires
isk-neutral preferences: this is usually not the case when we
re considering real-world situations, as investors are generally
isk-averse. risk aversion, however, is likely to change over time
ue to risk-on and risk-off shocks arising from global financial
onditions. Let us consider that investors face a standard problem
f bond consumption with concave utility U(ct ) with discount

factor γ . At any time t , the agent’s coefficient of relative risk
aversion −cU ′′/U ′ at time t+1 can be incremented by an amount
λ ∈ R+ which can be either negative (risk-on) or positive (risk-
off) with equal probability, yielding a new utility function Ū .3

2 Fornaro (2020) finds that entering a currency union increases financial
ntegration between member states. This is due to reduction of currency risk and
he associated easing of external borrowing constraints, driven in part by loss of
ational monetary and fiscal autonomy. A target zone setting is a quasi-currency
nion with the chosen target zone band representing the range of expected
luctuations. Evidence from New Member States suggests that the magnitude
f capital flows received may be very high even if the member state does not
nter the target zone process for adopting the Euro (Mitra, 2011). This may be
onsidered analogous to the index effects documented by Hau et al. (2010) for
merging market currencies.
3 This framework is equivalent to assuming heterogeneous investors, identical

n everything except in risk aversion, where between t and t + 1 each changes
er own risk aversion to a specific amount, and the resulting ±λ is the aggregate
verall change in the representative utility function.
 d

3

This implies that the asset pricing kernel (the stochastic discount
factor) will be given by

γ
Ū ′(ct+1)
U ′(ct )

= γ
U ′(ct+1)
U ′(ct )

∆U ′(ct+1) = Mt∆U ′(ct+1),

whereMt is the pricing kernel without the change in risk aversion
and ∆U ′(ct+1) is the change in curvature of the utility function
due to the change in risk aversion. Note that this last term is
also a random variable. More generally, if consumption of bonds
is at two discrete time points but their evolution is continuous,
this extra term is equivalent to the Radon-Nikodým derivative for
the change of measure between the densities generated by the
differently curved utility functions. The investors’ pricing kernel
is therefore

γ
Ū ′(ct+1)
U ′(ct )

=
dQ
dP

dQ̃
dQ
,

where Q is the foreign martingale measure of the home bond
under the original measure P, and Q̃ is the foreign martingale
measure under the new utility function. The UIP condition is then
given by

E{dXt}
(1 + i∗t )
(1 + it )

=
dQ
dQ̃
, (1)

where E{dXt} is the expectation of the log exchange rate condi-
tional on information available up to t and i∗, i are respectively
the foreign and domestic interest rates. In (1) the excess returns
required to complete the no-arbitrage condition decrease with
the investors’ risk aversion, since dQ

dQ̃
increases with a realization

f +λ (decreased risk aversion) and vice versa.
Eq. (1) is a modified UIP condition where the time-varying risk

remium is dependent on the change in investor risk aversion.
f we assume again log-normality of the foreign bond, since the
hange in risk aversion is equally likely on each side (each ±λ

is realized with probability 0.5), it is easily shown that the new
measure after the change in risk aversion is given by a Gaussian
density identical to the pricing kernel without the curvature
change, and an oscillating term that takes values ±λ with equal
robability, represented by a Bernoulli variable. We note that
he overall new measure dQ̃/dP is still a martingale but is not
aussian, even assuming an underlying (log) Normal distribution:
he oscillation of the change in curvature of the utility function
enerates an extra term

dQ̃
dQ

=
1
2

(
e−(x+λ)2/2

+ e−(x−λ)2/2
)
, (2)

which is precisely the perturbation of a Gaussian process by
means of a Bernoulli variable in the drift. We therefore have a
risk premium that is dependent on the equiprobable oscillation
±λ of investors’ risk aversion.

3.2. Dynamic mean-preserving spreads and exchange rate target
zones

Let us now include (1) and (2) in the exchange rate dynamics.
As is standard in the literature, the fundamental process for the
(log) exchange rate ft evolves according to dft = dvt + dmt ,
here vt is a money demand shock (velocity)mt is money supply,
sually assumed to be controlled by the central bank. As shown in
ppendix A, the risk premia from the modified UIP condition (1)
an be included in the velocity of a monetary model of exchange
ate determination, and we can write the fundamental process as
he stochastic differential equation

f = λBdt + σdW , f = f , (3)
t t t=0 0
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in the probability space (R,F, P) where dWt is the standard
Brownian motion with diffusion parameter σ and B is a Bernoulli
andom variable that takes on the values {−1, 1} each with prob-
bility 0.5 and λ ∈ R+. Without any loss of generality, (3) can be
escaled as

ft = βBdt + dWt , (4)

here β = λ/σ 2 is the rescaled risk parameter. The stochastic
rocess (4) driving the fundamental is the dynamic equivalent of
mean-preserving spread, and has been studied by Arcand et al.
2020). Risk aversion shocks in the velocity, therefore, cause an
ncrease in risk in the fundamental that push probability away
rom the mean and generate non-Gaussian tails, whilst leaving
he systematic average unchanged.

As seen in Eqs. (1) and (2), such shocks cannot be repre-
ented by Gaussian fluctuations, and we prove this formally in
ppendix D. This also allows us to precisely characterize the
nterplay of diffusive fluctuations (variance) and destabilizing
orces4 (risk, via changes in investor risk aversion): the pres-
ure that external risk causes that pushes the exchange rate
owards the bounds is counteracted by the central bank’s efforts
o maintain the fundamental fluctuating around its mean. This is
recisely what is observed by Lera and Sornette (2015), who show
hat this sustained pressure stemmed from the Swiss Franc being
sed as a safe asset in the middle of the European crisis.
By the definition of a target zone, the central bank requires

he fundamental process to remain bounded within a set interval
f , f ] ∈ R. By adjusting money supply, the central bank regulates
the fundamental process within this interval, also known as the
target band. As shown in Appendix A, the equation for the log-
exchange rate Xt under the modified UIP condition (1) in the
interval [f , f ] can therefore be written as the regulated stochastic
ifferential equation

t = ft +
1
α
E {dXt} ft ∈ [f , f ] ∀t ∈ [0, T ], (5)

here ft evolves according to (4), equipped with the reflecting
‘‘smooth pasting’’) boundary conditions

f Xt |f=f = ∂f Xt |f=f = 0. (6)

At a fixed time T the spot exchange rate is set to exit the target
zone and match the target fundamentals. We are interested in
the exchange rate dynamics generated by (5) throughout the time
interval [0, T ], and therefore explicitly allow time-dependent dy-
namics Xt = X(t, ft ) and study non-stationary behavior. The
term 1/α, with 0 < α < 1 is the absolute value of the semi-
elasticity of money with respect to the nominal interest rate. As
this quantity is always greater than unity, we interpret it as a
frequency (i.e. 1/[time unit]) which modulates the size of the
forward-looking time window. For simplicity of exposition, we
focus our attention on target zones that are symmetric around
0 of the form [−f , f ], although all our results hold for general
bounds. We can now state the main result of the paper.

Proposition 1. The solution of the stochastic differential equation
(5) reflected via (6) in the bounded domain [0, T ] × [f , f ] → R is
iven by the process

(t, f ) = X∗(t, f ) + XS(f ), (7)

hich is the sum of stationary and non-stationary solutions. The
tationary solution is given by

S(f ) = cosh(βf )−1 [AY1(f ) + BY2(f ) + YP (f )] , (8)

4 The term βB is indeed a force, being the derivative of the probabilistic
otential of the process f .
t

4

where we have:

Y1(f ) = exp
(

+

√[
β2 + 2α

]
f
)
,

Y2(f ) = exp
(

−

√[
β2 + 2α

]
f
)
,

YP (f ) =
[αf cosh(βf ) + β sinh(βf )]

α

and the constants A, B are obtained by smooth-fitting at the bound-
aries

∂f XS(f ) |f=f = ∂f XS(f ) |f=f = 0. (9)

The non-stationary solution is obtained by means of an eigenfunction
expansion and is given by

X∗(t, f ) = cosh(βf )−1
∞∑
k=1

ck exp
[
−(Ω2

k + ρ)(T − t)
]

× sin
(√

2Ωkf
) (10)

ith ρ =
β2

2 + α and Fourier coefficients given by

ck = −
1

f

∫
+f

−f
XS(f ) sin

(√
2Ωkf

)
df .

This solution is defined over a complete set of real eigenvalues
{Ω1, . . . ,Ωk, . . .}, k = N+ that solve
√
2Ωk cot

(
Ωkf

)
− β tanh(βf ) = 0, ∀k ∈ N+ (11)

and span the discrete spectrum Ω :=
{
Ωk(β, f )

}
.

Proof. See Appendix B.

To see how the results are unaffected by both the band choice
and its symmetry around 0, notice that the bounds enter the
particular solution only via the scalar quantities A and B, and
in the general solution via the integration limits of the Fourier
coefficients. An illustration of the stationary solution (8) is pre-
sented in Fig. 1, which also shows how an increase in risk β in the
fundamental prompts the (stationary) exchange rate to behave
more independently of the dynamics of the fundamental. At high
levels of β , the exchange rate dynamics are driven mostly by
the risk and depend less on fundamentals, especially around the
bounds, as represented by the steepening of the central slope.
In this figure, f = 10% and we assume a quasi-daily time step
for the expectation α = 0.8. Our parameterization of α = 0.8
corresponds to a case of fast agent updating, which is similar
to the case studied by Ferreira et al. (2019) and Coibion and
Gorodnichenko (2015). Changing the α to a lower fundamental
updating frequency will reduce the sensitivity of the exchange
rate to the fundamentals.

For any k ∈ N+, the corresponding Ωk(β, f ) solves (11), and
has to be calculated numerically. For a general β > 0, one
observes that the successive eigenvalues are not evenly spaced,
and display a distance which decreases in k. The spectrum is
controlled by the width of the target zone f̄ : the wider the band,
the smaller the separation. The spectrum and its relationship with
the target band size are illustrated in Fig. 2. Observe also that in
the limit β = 0, one straightforwardly verifies that from Eq. (11)
one obtains the evenly spaced set Ωk(0, f ) = (2k + 1) π

2f
.

3.3. Can one hear the shape of a target zone?

When t = T , from Eq. (10), by construction of the Fourier
coefficients ck, we have X∗(T , f ) = −XS(f ) and so X(T , f ) =

X∗(T , f ) + X (f ) = 0 thus reaching the required fixed parity.
S
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t
w
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Fig. 1. Effect of varying β on stationary exchange rate dynamics.
Fig. 2. Target zone band and spectrum. Graphical illustration of the solution of Eq. (11), showing the effect of varying f̄ on the spectrum Ωk .
Fig. 3. Transient dynamics. This figure shows the evolution of X(T − t, f ) of the non-stationary dynamics in the target zone. The left panel shows the behavior of
he time-dependent part: we assume a target zone which has been set to T = 3 years, with β = 1 for a given set of fundamentals. For the sake of visualization
e truncate the figure towards the end of the target zone. The right panel shows the full dynamics for an increase in risk. Here we have assumed a target band
ymmetric around zero, i.e. f̄ = 10% = −f . We also assume α = 0.8. We truncate the eigenfunction expansion at 50. The second panel illustrates the change in
dynamics from β = 0 (Gaussian) to β = 5.
An illustration of the non-stationary exchange rate dynamics,
as well as the overall transition dynamics throughout the time
interval [0, T ], is presented in Fig. 3. The solution allows one to
express the movements of the exchange rate via a weighted sum
of its stationary behavior, its distance to the exit time and the
distance between its value at any time t and the target band.
The eigenvalues modulate the frequency of both fundamental
5

and exchange rate movements within the band. The Fourier co-
efficients ck represent the impact of the size of the target band
in the overall dynamics, via their weight on the infinite series
of frequency components (the ‘‘harmonics’’ of the exchange rate
path). Loosely speaking, this formulation of the solution allows
one to describe the sensitivity of the exchange rate to the distance
to the target band. Once the spectrum and the eigenfunctions are
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known, as famously asked by Kac (1966), ‘‘if one had perfect pitch’’,
ne would be able to ‘‘hear’’ the shape of the target zone. Indeed,
he time-independent part of the problem is a one-dimensional
eumann problem on the boundary ∂D = [f , f ]

∆f +Ωf = 0
∇f |∂D = 0,

hich is exactly the problem of finding the overtones on a vibrat-
ng surface.

This formulation of the solution allows us to uncover the
nique nature of the smooth-pasting conditions: the exchange
ate process is not reflected at the bounds in the probabilistic
ense, since this would have been modeled as a zero deriva-
ive condition on the transition probability density function. The
igenfunction expansion shows that in a target zone there exist
‘soft’’ boundaries, where the central bank interventions are deter-
ined by the interplay of the distance of the exchange rate to the
ounds as well as the tendency of the fundamental to hit them
the risk). This allows us to ‘‘endogenize’’ the bands: because of
{dXt} in the exchange rate Eq. (5), we have a second-order term
hich allows us to solve the equation in its Sturm–Liouville form.
he Fourier coefficients in Proposition 1 modulate the sensitivity
f the exchange rate to the distance to the band, allowing for the
entral bank to intervene whenever the fundamental is felt to be
pproaching the bounds.
This mechanism is a direct translation of how much the fun-

amental tends to escape and how much the central bank needs
o intervene marginally or intramarginally: it is a direct con-
equence of the presence of expectations in the exchange rate
quation. In other words, the higher the tendency to hit the
ounds, the greater is the likelihood that the central bank will
ctually intervene intramarginally, with increasingly less weight
laced on the actual position of the fundamental within the band.
here exist therefore both de jure and de facto bands, which is a

feature of target zones observed empirically by Lundbergh and
Teräsvirta (2006): if the de jure band is large, expectations over
he magnitude of risk react to a narrower de facto band. This is a
henomenon commonly observed in most ERM countries but not
et formalized.5

. Feasibility, regime shifts and numerical simulations

In this section we discuss the key contributions of our frame-
ork: the role of the spectral gap in determining target zone

easibility, the characterization of the minimum feasible time
o exit via the relaxation time of the exchange rate process,
nd how the fundamental risk can generate regime shifts that
ake honeymoon effects unobtainable. Furthermore, via numer-

cal simulations we show how our model replicates the different
xchange rate densities described in the established literature.

.1. Target zone feasibility and the spectral gap

Let us begin by studying the interplay between the risk param-
ter β , the size of the target band [−f ,+f ] and the time horizon
at which one reaches the target zone. We first note that at

he initial time t = 0, from Eq. (10) we have X∗(0, f ) ≈ 0 and
herefore X(0, f ) = X∗(0, f ) + XS(f ) ≈ XS(f ). Since Ω1(β, f ) <
2(β, f ) < · · · , one can approximately write:

X(T , f ) ≃ XS(f ) + O
(
e−(Ω2

1+ρ)T
)
.

While for the exact solution we should have X(T , f ) = XS(f ), one
ees immediately that X(T − t, f ) = XS(f ) + X∗(T − t, f ) with

5 See Figure 2 in Crespo-Cuaresma et al. (2005).
 d

6

X∗(T − t, f ) given by Eq. (10) nearly matches the exact solution,
provided we have an horizon interval T ≳ trelax where trelax :=(
Ω2

1 + ρ
)−1 is the characteristic relaxation time of the exchange

rate process. This provides a validity range for the non-stationary
dynamics given by the expansion of Eq. (10).

Hence, at time t = 0, the required initial probability law XS(f )
s reached only for a large enough time horizon T ≳ trelax. This
ow enables us to link the non-stationary dynamics of X∗(t, f ) to
he feasibility of the target zone: the relaxation time τrelax deter-
ines the minimum time interval for which a feasible target zone
ay be maintained. The larger β (the risk of the fundamental,
temming from larger shifts in agents’ risk aversion), the greater
s the tendency of the fundamental to escape from its mean; the
uthorities need therefore to maintain the target zone for a longer
inimum duration. An increase in risk, for a given f̄ , implies that

he target zone would have to be set for a longer horizon T to
e feasible. Alternatively, for a given risk β , an increase of the
arget zone width f , requires a longer minimal T implementation
to ensure the overall feasibility of the policy. In other words, the
central bank has to impose that the time horizon T is at least as
large as the relaxation time trelax.

An intuitive interpretation of the relaxation time in this frame-
work is to understand trelax as the characteristic elapsed time
required to ‘‘feel’’ the first effects of the home central bank’s
actions aimed at reducing fluctuations of the exchange rate, com-
pared to a free float. The bank’s actions may be then viewed as
a de facto reduction of the target zone band over time, whilst
the de jure band remains unchanged. Furthermore, trelax can be
interpreted as being the minimum time for agents to update
their priors accurately, generating self-fulfilling expectations that
create the honeymoon effect.

The inverse of the relaxation time is determined by the spec-
tral gap, which is the distance between 0 and the smallest eigen-
value. We therefore have the relationship (trelax)−1

= (Ω2
1 + ρ).

The spectral gap controls the asymptotic time behavior of the
expansion given by (10), and it is continuously dependent on risk
β and band f̄ . This relationship is illustrated in Fig. 4.

Let us now study analytically the behavior of the solution Ω1
of the transcendental Eq. (11). Writing z =

√
2Ω1f , Eq. (11)

implies that the product βf is the determinant of the amplitude
of Ω1. One can therefore immediately conclude that two limiting
situations can be reached:⎧⎪⎪⎨⎪⎪⎩
βf ≪ 1 ⇒ z ≲ π

2 ⇒ Ω1 ≲ π

2f
⇒ t−1

relax ≲
[
π

2f

]2
+

β2
2 + α,

βf ≫ 1 ⇒ z ≳ π ⇒ Ω1 ≳ π

f
⇒ t−1

relax ≳
[
π

f

]2
+

β2
2 + α.

and therefore:
1[

π

f

]2
+

β2

2 + α

≤ trelax ≤
1[

π

2f

]2
+

β2

2 + α

. (12)

q. (12), together with Fig. 4, shows how an increase in risk β
ffects trelax more strongly when the exchange rate is allowed to
loat in a wider bandwidth f̄ .

.2. Regime shifts and honeymoon effects

An unique phenomenon that arises in our framework, is the
mergence of a regime shift. Fig. 5(b) shows that for a wide enough
arget band, beyond a threshold level of β , the relaxation time
uddenly jumps to a much lower value and remains almost con-
tant (though very slowly increasing) for further increases in risk.
his happens because when the tendency β of the noise source
riving the fundamental reaches and surpasses a certain level, the
estabilizing risk component in the noise source overcomes the
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Fig. 4. Interaction between β and f . This figure shows the interaction of varying risk (β) and varying the band size (f ). An increase in risk, for a given f , implies
hat the lowest eigenvalue Ω1 falls. The inverse of this value controls the trelax .
Fig. 5. Regime shift and eigenvalue jump as a function of risk, for different target bands.
iffusion. The force βB in the mean-preserving spread becomes
he main driver of the stochastic process driving the fundamental,
nd therefore ft becomes a process with a tendency to escape
rom its mean that is stronger than the tendency to diffuse around
ts central value. While this may look like a sudden emergence of
upercredibility, it is in fact the opposite: the target zone cannot
e feasibly maintained, as the fundamental process escapes its
nitial position with such force that it hits the band at every dt ,
nd interventions need to be almost continuous. The central bank
ill have to either increase the size of the band or allow the spot
ate to float freely. This has a direct implication for honeymoon
ffects, as shown in the following Proposition:

roposition 2 (Risk, Regime Shifts and Honeymoon Effects.). There
xists a threshold level of risk βe

∈ R+ which generates a regime
hift. This is caused by a jump in the spectrum Ω , as the elasticity
ith respect to the fundamental process of each eigenfunction ψk
ssociated to the eigenvalue Ωk must always match the underlying
ean-preserving probability spread:

∂fψk(Ωk, ft )
ψk(Ωk, ft )

= MPS(β, ft ) ∀ Ωk(β, f ) ∈ Ω. (13)

or β ≥ βe, the smooth-fitting procedure at the boundaries cannot
e applied and honeymoon effects when the fundamental approaches
he band become unobtainable.

roof. See Appendix C.

Proposition 2 implies that a high level of risk denies a central
ank monetary autonomy up until the moment of entering the
7

currency zone. This phenomenon is illustrated in Fig. 7. The first
term in (13) is a total sensitivity term, closely related to the
elasticity of the eigenfunction with respect to the fundamental,
and it represents the overall variation of the exchange rate with
the fundamental. The second term represents the increase in
risk, as well as the destabilizing component that represents the
tendency of the fundamental to hit the target bands. The solution
of this equation yields the spectrum {Ωk}, for k = N+. The
difference of the two terms represents the residual tendency of
the home country fundamental to avoid converging to the target
fundamental. The spectral gap, therefore, represents the intensity
of the probability spread.

The regime shift will happen at a threshold value βe, which
can only be determined numerically, for which the spectral gap
will suddenly jump upwards: the destabilizing force dominates
the diffusive part and the first eigenvalue jumps higher. The
oscillating part of the expansion increases in frequency, and the
time-dependent exponential decay increases in speed. A graphical
illustration is shown in Fig. 6: one can easily show that the lower
bound for the threshold βe is given by 1/f̄ . This allows one to
uncover the close relationship between the regime shift and the
size of the target band. This regime shift cannot occur with a
Gaussian process or with mean-reverting dynamics.

In the diffusion-driven regime (characterized by a relatively
low β < 1/f ), one observes that an increase of risk implies a
decrease in sensitivity, since trelax is increasing. This may seem
counterintuitive: but it must be remembered that at time t = 0,
the initial condition is the stationary solution of the central bank-
controlled diffusion for the given risk. Increasing β , therefore, is
likely to load the stationary probability mass accumulated in the
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Fig. 6. Risk and eigenvalue jump. For β = 15 the regime shift has occurred: the force β tanh(βf ) (black curve) overcomes the diffusion component and generates
he first eigenvalue jump. For β = 6 (red curve), the regime has not yet shifted. Here f̄ = 0.1, σ = 1, α = 0.8.
Fig. 7. Risk threshold, distance to the bands and honeymoon effects: large risk shocks vs. diffusion-driven regimes.
w
f
p
v
e

vicinity of the target zone boundaries. Escape from this stationary
state by bank action becomes more difficult, ultimately leading
to an increase of trelax. Conversely, in high risk regimes where
> 1/f and where the destabilizing dynamics dominate, the

oundaries of the target zone are systematically hit by the fun-
amental. In this situation, the central bank will intervene almost
ntirely intramarginally regardless of whether the fundamental is
ctually close to the bands, since honeymoon effects cannot exist
nymore. This result allows in Eq. (12) for a sudden reduction
f the probability mass located at the bounds, and generates the
harp drop of trelax. In other words, the shape of the target zone
annot be ‘‘heard’’ anymore, even if the spectrum is fully known:
oneymoon effects vanish and the central bank operates in an
nfinitesimally narrow band.

This result provides new insight into target zone feasibility:
f risk is too high, exchange rate expectations are no longer
nchored to the band and the effectiveness of central bank in-
ervention is greatly reduced. What the central bank could do
s therefore either (i) to reduce risk, which in practice is often
nfeasible, or (ii) to increase the size of the target zone which itself
s bounded by the free-float exchange rate volatility. The new size
f the band would have to be large enough for the shape of this
ew target zone to be heard.
We can therefore also connect the threshold βe at which the

egime shift occurs to complete factor market integration: for
ower levels of β , the home fundamental exhibits an idiosyncratic
omponent anchored to its original dynamics that is stronger
han its tendency to converge to the target fundamental. Once
his component is overcome, the target zone ceases to exist and
 f

8

the currency starts floating. This may also help explain why
countries with a high level of capital integration with the target
currency may have higher costs in maintaining a target zone. This
is precisely what Lera and Sornette (2015) illustrate with the case
of the Swiss Franc floor between 2011–2015. In this particular
case, the sustained pressure stemmed from the Swiss Franc being
used as a safe asset in the middle of the European crisis.

4.3. Numerical simulations

The last contribution of our model lies in its generality, and
how it can replicate all the exchange rate densities presented
by the established target zone literature. We simulate central
bank intervention by means of a symmetrized Euler scheme for
stochastic differential equations. Since the original problem is
a one-dimensional Neumann problem on the boundary ∂D =

[−f̄ , f̄ ], the regulated SDE can be written as:

ft = f0 + β

∫ t

0
tanh(βfs)ds + σ

∫ t

0
dWs +

∫ t

0
γ (fs)ds,

here the hyperbolic tangent is the nonlinear drift stemming
rom external risk6 and γ (.) is the oblique reflection of the
rocess on the boundary ∂D. This is the equivalent of the inter-
entions, and we assume that for the unit vector field γ there
xists a constant c so that γ (x) · n⃗(x) ≥ c for all points x on

6 This is an equivalent representation of (3): see Arcand et al. (2020) for
urther details.
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Fig. 8. Exchange rate densities, β = 0.
Fig. 9. Exchange rate densities, β > 0, β < βe .
the boundary D. This can be interpreted as assuming bounded
interventions. We use a regular mesh [0, T ] for the numerical
simulation, for which the weak error is of order 0.5 when the
reflection is normal (i.e. γ = n⃗), which is our case. We choose
this method in order to obtain consistent Monte Carlo simulation
of the resulting densities. The algorithm starts with f0 = 0 and
for any time ti for which fti ∈ D we have for t ∈ ∆t = ti+1 − ti
that:

FN,i
t = f Nti + b̂(f Nti )(t − ti) + σ (Wt − Wti ),

as in the standard Euler–Maruyama scheme, and the nonlinear
drift is approximated with a second-order stochastic Runge–Kutta
method. If FN,i

t+1 /∈ ∂D, then we set:

f Nt+1 = π
γ

∂D(F
N,i
t+1) − γ (FN,i

t+1),

where π∂D(x) is the projection of x on the boundary ∂D parallel to
the intervention γ . If FN,i

t+1 ∈ ∂D, then obviously f Nt+1 = FN,i
t+1. For

more references, see Bossy et al. (2004). The exchange rate path is
then obtained by setting XN

t = X∗(f Nt , T−t) for every t ∈ [0, T ]. It
is of fundamental importance to set ∆t equal to the update ratio
given by 1/α in our model, so that the increment of the simulated
exchange rate path has the same updating time frequency as the
central bank.

We can now discuss two kinds of interventions: the kind that
intervenes by reflecting the process so that it just stays within
the band, sometimes called ‘‘leaning against the wind’’ (LAW),
and the pure reflection variety, which projects the fundamen-
tal process by an amount equivalent to how much the process
would have surpassed the boundary. This distinction can also be
understood as being associated with the magnitude of reserves
that the central bank has at its disposal in order to stabilize the
fundamental process: the greater this quantity, the more likely
9

it is that the intervention will be of the pure reflection type. We
also assume that an intervention is effective instantaneously. As
shown in Fig. 7, given our characterization of risk, the greater the
β , the earlier the central bank will have to intervene, given the
fundamental’s increased tendency to escape towards the bands.

We present five possible scenarios by estimating Monte Carlo
densities of the simulated exchange rate process: the first two
correspond to the Gaussian case, where β = 0 with each of the
two intervention strategies. The densities are obtained by Monte
Carlo simulation of N sample paths, binning the data and limit-
ing the bin size to zero to obtain the convolution density, then
averaging over the N realizations and interpolating the resulting
points. For more references on the method, see Asmussen and
Glynn (2007). For all figures N is set to 5000, σ = 0.1, r =

0.5, α = 200, T = 3 and the exchange rate target band to ±10%.
We obtain a realization path for each of the two and obtain both
U-shaped (corresponding to the standard Krugman model) and
hump-shaped densities, corresponding to the Dumas and Delgado
(1992) framework. The realized densities are plotted in Fig. 8. We
then simulate the case in which β > 0 but is not large enough
to trigger the regime shift, each one with a different intervention
strategy: in the marginal intervention case we obtain the two-
regime density (β = 5) where de facto bands start to appear,
as in the Bessec (2003) framework. For the intramarginal one
we obtain a typical hump-shaped distribution. These results are
shown in Fig. 9.

Finally, we present the case in which β is large enough (β =

50) to trigger the regime shift, and the band in fact ceases to
exist: the tendency to escape leads to the fundamental process
constantly surpassing the boundary, honeymoon effects are im-
possible and pure reflection intervention concentrates most of the
realizations around the initial level. The target zone is untenable
and the central bank must either increase the bandwidth or drop
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Fig. 10. Exchange rate densities, β > βe .

the target zone altogether. For large N the exchange rate density
becomes a Dirac delta function around the initial value of the
fundamental, displayed in Fig. 10.

5. Policy implications and relevance

Our framework yields multiple interlinked policy implications.
First, we are able to characterize the feasible band in a target

zone which allows central banks to enjoy honeymoon effects,
reducing the cost of intervention for achieving the set parity.
From (13) and the subsequent discussion one can obtain the
minimum size |f | > 1/β , which is directly related to the risk
threshold that makes the target zone untenable. A central bank
entering a target zone mechanism with a terminal exit time to
another currency wants to limit the volatility of its exchange rate
Xt versus the anchor currency below the free-float level of the
anchor currency. This provides us with a natural condition for the
maximum size of the band that the central bank can set as |f | ≤

σz , where σz is the long-term variance of the anchor currency.
Considering the case of a target zone mechanism like ERM-II
which has a band size of ±15%, the above condition implies that
it is unlikely that the ERM-II bands will be breached. The Euro has
a long-run volatility versus most currencies that is lower than the
ERM-II target band. If there were no exposure to external risk, it
would be pointless to maintain a target zone with bands larger
than σz .

The second policy contribution lies in establishing the min-
imum time that a target zone must be maintained before any
successful convergence can be achieved, via the concept of char-
acteristic relaxation time trelax, directly connected to the spectral
gap (12). The relaxation time determines the minimum time a
target zone must be maintained in order to ‘‘feel’’ the first effects
of the home country central bank’s actions. The implications of
this quantity for central bank policies are substantial: choosing an
exit time below trelax would imply setting up an unfeasible target
zone, as trelax controls the minimum time necessary for agents
to update their previously held exchange rate expectations, gen-
erating self-fulfilling expectations that create the honeymoon
effect.

A further implication of this mechanism is that a central bank
cannot adopt a target currency overnight with an arbitrary parity
being the close of day value of the target exchange rate. In such a
case, agents would not have had time to update their expectations
and this would force the central bank to use a larger proportion of
its assets (in the target currency) defending the parity level. This
opens up many different avenues of enquiry into the expectation
generation process of agents in foreign exchange markets. If trelax
is the minimum time for agents to update their previously held
exchange rate expectations, this means that higher degrees of
agent risk aversion (higher β) will increase t , which is an
relax t

10
implication of our model. As shown by Osler (1995) and Lin
(2008), this effect would work through the feasibility of the target
zone in time shifting speculators’ horizons towards short term
speculation, where tspeculation ≤ trelax. This is a natural outcome of
oneymoon effects, which make intervention cheaper for central
anks and harder for speculators after trelax. We find that trelax

is increasing with the magnitude of the risk aversion shifts, for
β ≤ βe.

Our model does not deal with optimal choices: indeed, the
only choice variable potentially available to the authorities is the
time horizon T by which the required parity needs to obtain.
If one chooses an exit time which is lower than the required
minimum time at which parity can be reached (the relaxation
time), the target zone exit time is not feasible. However, setting a
T which is too high exposes one to increased business cycle risks,
the dampening of which were a likely reason for entering a target
zone in the first place.

5.1. Relevance

Our measure of fundamental risk can be used to fit a broad
spectrum of global shocks which can destabilize exchange rate
fundamentals. In Appendix E we show how inflation expecta-
tions (key fundamentals in the determination of exchange rates)
of ERM-II countries follow a highly non-Gaussian distribution,
compatible with our fundamental dynamics (4), and we pro-
vide alternative reduced-form interpretations of β as a source of
destabilizing risk.

Our framework is also similar to the currency crisis mod-
els that study speculative attacks on managed exchange rate
arrangements, which include target zones. These models main-
tain a Gaussian fundamental process but add state-dependent
target zone commitment to incorporate endogenous devaluation
risk (Flood and Marion, 1999; Obstfeld, 1996). With our mea-
sure of non-Gaussian external risk we achieve similar outcomes
and can therefore study the feasibility of a target zone from a
more general perspective, without assuming any central bank or
government reaction function. Furthermore, the aforementioned
models cannot explain how honeymoon effects can vanish under
crises, a mechanism that can be captured only using our rigorous
characterization of risk.

Our framework has substantial implications for managed ex-
change rate arrangements beyond target zones. It sheds light on
the nature of external risk and points towards different strategies
that central banks can adopt in order to limit negative spillovers
from the global financial cycle. Negative spillovers that lead to
capital flow reversals may induce exchange rate revaluations that
are not in line with fundamentals, leading to increases in risk
in (4) that could challenge the feasibility of the target zone.
The optimal policy response in such a situation is to increase
the risk-sharing between the home currency and the target cur-
rency central banks, which would reduce the pressure on the
fundamental and return the risk β to a safe distance from the
threshold βe. This strategy may take the form of swap lines or
joint intervention in times of large exchange market pressure.

Should such cooperation not be possible, home central banks
may have to use the second-best option of macro-prudential and
capital flow measures limiting capital flow volatility from trans-
lating to exchange rate volatility. Dorrucci et al. (2020) show that
the European Central Bank (ECB) has made progress towards the
second-best policy outcome by mandating that countries joining
the Euro through the ERM-II have to join the European banking
union and be subject to enhanced banking sector supervision.7

7 The majority of the capital flow volatility realized by ERM-II countries in
he 2000’s was via banking sector capital flows rather than portfolio flows.
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The use of swap-lines by the ECB for ERM-II countries during the
COVID-19 pandemic is an example of pro-active policy ensuring
the feasibility of target zones. While provision of emergency swap
lines is not standard practice, given legitimate concerns of moral
hazard for new member states, our model shows how it may be
useful in allowing for a successful convergence.

The policy relevance of our framework for finite-time target
ones is further illustrated outside of Europe by the attempts
y the Economic Community of West African States’ (ECOWAS)
o get 15 countries in West Africa to adopt a common currency
the ECO). ECOWAS had an ambitious and common target zone
ime horizon of one year for all 15 participating countries to
ransition to the ECO from the West African CFA Franc prior to
he onset of the COVID-19 pandemic. The original plan for Eco
doption did not factor in the inherent idiosyncratic risk faced
y individual West African central banks and ignored external
isk factors. This translates directly to our framework, where the
isk β may generate a relaxation time trelax for individual states
hat may be larger than the proposed convergence time T . In
ight of the COVID-19 pandemic and its heterogeneous impact
n the ECOWAS member states, the final time for convergence
as been moved from 2021 to 2027, yielding a more realistic
ime frame for adoption of the Eco. Our framework can guide the
articipating central banks away from unrealistic time horizons
ith potentially long lasting consequences for both their own
redibility and for the overall likelihood of creating the new
ommon currency.

.2. Extensions

Lastly, in the Appendices we provide a set of extensions to our
ramework. In this paper we choose to focus on a fundamental
rocess that remains stationary in distribution around its long-
un level, here normalized to 0 without loss of generality. This
s the case for most target zones. However, if the fundamental
as substantially misaligned from its long-run level, then the
hoice of a mean-reverting process could be more appropriate.
he analysis of this case is presented in Appendices F and G,
here we fully solve both Ornstein–Uhlenbeck (O–U) and non-
aussian, softly attractive dynamics. The latter can be of interest
or researchers as an alternative to the O–U process, since it
llows one to again escape Gaussianity and to model an ergodic
rocess with light attraction towards its long-run level, whilst
aintaining analytical tractability.

. Conclusions

Can one hear the shape of a target zone? The answer de-
ends on whether the target zone is set up in a feasible way
iven the underlying fundamental risk that counteracts central
ank efforts. In this paper we have explored the implications of
xtending exchange rate target zone modeling to non-stationary
ynamics and heavy, non-Gaussian tails stemming from time-
arying investor risk aversion, which lead to mean-preserving
isk increases in the fundamental distribution. Our framework
eads to a natural interpretation of target zone feasibility, driven
y the interplay between two contrasting forces: a destabilizing
ffect driven by risk which pushes the exchange rate towards
he bands, and a stabilizing diffusive force. For a given band,
here is a maximum level of risk that allows one to ‘‘hear’’ the
arget zone. We show how our model effectively endogenizes the
resence of the bands by the exchange rate expectations, and how
he interplay between risk and target band has key implications
or the credibility of the zone itself, as well as the possibility of
oneymoon effects. Intervention is shown to be both marginal
nd intramarginal, depending on howmuch the central bank feels
11
both the distance to the target zone band and the presence of
external risk. The potential emergence of regime shifts, moreover,
can further erode target zone credibility. This allows the methods
employed in this paper to be applied to a wide range of situations.
A relevant future extension of our work would be its empirical
counterpart, consisting in the structural estimation of the model
parameters and an explicit computation of the relaxation time,
thus effectively providing the feasible band size as well as a lower
bound for the necessary time for a central bank to reach the
desired parity for its currency.
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Appendix A. Monetary model of exchange rate determination

Let us start with a standard flexible-price monetary model of
exchange rate as in Ajevskis (2011). The money demand function
is given as

mt − pt = θ yyt − θ it + ϵ (14)

here m is log of the domestic money supply, p is log of the
omestic price level, y is the log of domestic output and i is the
ominal interest rate. θy is the semi-elasticity of money demand
ith respect to output whereas θi is the absolute value of the
emi-elasticity of money demand with respect to the domestic
ominal interest rate and ϵ is a money demand shock. The second
lock is given by the expression for the real exchange rate q
hich is defined as

t = Xt + p∗

t − pt

here p∗ is the log of the foreign price level. The third block of
his model is the uncovered interest rate parity condition which
n a linearized form is given by

dXt = (it − i∗t ) − ηt (15)

here EdXt is the expectation of the exchange rate conditional
n information available until time t and i∗t is the foreign interest
ate. ηt is a time-varying risk premium and is a consequence
f risk-averse foreign investors who demand a higher compen-
ation for holding home bonds and depends on investors’ risk
version. Let us consider that investors face a standard problem
f consumption of two bonds, home and foreign, with concave
tility U(ct ) discounted at γ . Bh

t is the holding of home (small
pen economy) bonds, Bf

t is the holding of foreign bonds by a
epresentative agent. Consumption and bond holdings in period
and t + 1 are given by the problem

max
t+1,Bht ,B

f
t

∞∑
t=0

γ tU(ct )

ct = Bh
t + XtB

f
t

E[ct+1] = (1 + it )Bh
t + E[Xt+1](1 + i∗t )B

f
t .

Solving this problem leads straightforwardly to Eq. (1). Using
Eqs. (14), (15) and (1), we recover the monetary model of the
exchange rate as given by

θEdXt −θ
yyt + qt + p∗

t + θ i∗t − ϵ  
vt

+θηt + mt

  
= Xt 3
ft
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Xt = θEt{dXt} + vt + θηt + mt

= θ

(
Et{dXt} +

dQ
dQ̃

)
+ vt + mt . (16)

n the literature the velocity vt is usually modeled as a Brownian
otion. In order to include ηt , the time-varying risk premium,
e modify the Brownian motion to include the incremental risk
enerated by varying investor risk aversion by means of (2).
ntervention happens at the boundaries f , f , at which the central
ank undergoes infinitesimal adjustments of money supply mt in
rder to keep the fundamental in the band. Eqs. (3), (5) and the
oundary conditions then follow directly.

ppendix B. Proof of Proposition 1

Using Itô calculus, Eq. (5) can be written as follows:

tX(t, f ) +
σ 2

2
∂ff X(t, f ) + βB∂f X(t, f ) − αX(t, f ) = −αf . (17)

Note the presence of the additional term ∂tX(f ) in Eq. (23) which
does not appear when one focuses only on stationary situations.
As shown in Arcand et al. (2020), Eq. (23) can be written equiv-
alently as the nonlinear partial differential equation given by

∂tX(t, f ) +
1
2
∂ff X(t, f ) + β tanh(βf )∂f X(t, f ) − αX(t, f ) = −αf .

(18)

sing the superposition principle, the solution of (18) can be
ritten as the sum of the time-independent stationary solution
nd the non-stationary solution:

(τ , f ) = X∗(τ , f ) + XS(f ). (19)

For the derivation of the stationary solution, we first introduce
the following Ansatz:

∂f X(t, f ) = Y (t, f )/ cosh(βf ). (20)

This leads to the following transformations:

X =
Y

cosh(βf )
,

tanh(βf )∂f X =

[
β
sinh(βf )
cosh(βf )

][
−β

sinh(βf )
cosh2(βf )

+
∂f Y

cosh(βf )

]
= −β2 sinh

2(βf )
cosh3(βf )

Y + β∂f Y
sinh(βf )
cosh2(βf )

,

1
2
∂ff X =

1
2 cosh(βf )

∂ff Y −
β sinh(βf )
cosh2(βf )

∂f Y

−
β2

2
Y

cosh(βf )
+ β2 sinh

2(βf )
cosh3(βf )

Y ,

hich substituted in (18) yield the following linearization:

tY (t, f ) +
1
2
∂ff Y (t, f ) −

[
β2

2
+ α

]
Y (t, f ) = −αf cosh(βf ). (21)

etting ∂t = 0 one obtains a nonlinear ODE in f which has the
losed form solution as given by⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

Y1(f ) = exp
{
+

√[
β2 + 2α

]
f
}
,

Y2(f ) = exp
{
−

√[
β2 + 2α

]
f
}
,

Y (f ) =
2α(f (2α) cosh(βf )+2β sinh(βf ))

(22)
P
(2α)2

12
which is the sum of the general solution (two opposite-sided
exponentials) and a particular solution. Obtaining the general so-
lution is a simple exercise and thus omitted, while the particular
solution requires a little more attention. We introduce another
Ansatz:⎧⎪⎪⎪⎨⎪⎪⎪⎩
Y = [Rf cosh(βf ) + S sinh(βf )] ,

∂f Y = [R cosh(βf ) + Rf β sinh(βf ) + Sβ cosh(βf )] ,

∂ff Y =
[
2Rβ sinh(βf ) + Rf β2 cosh(βf ) + Sβ2 sinh(βf )

We therefore have:
1
2∂ff Y −

[
α +

1
2β

2
]
Y + αf cosh(βf ) =[ 1

2Rβ
2
−
[
α +

1
2β

2
]
R + α

]
f cosh(βf ) +

[
Rβ +

1
2Sβ

2

−
[
α +

1
2β

2
]
S
]
sinh(βf ) = 0.

Matching coefficients we obtain:⎧⎨⎩
[ 1
2Rβ

2
− (α +

1
2β

2)R + α
]

= 0,[
Rβ +

1
2Sβ

2
−
[
α +

1
2β

2
]
S
]

= 0.

which implies R = 1, S =
β

α
and thus

YP =
αf cosh(βf ) + β sinh(βf )

α
.

Inverting the transformation back to X one obtains (8). In Eqs. (8)
the pair of constants A and B can be determined by smooth fitting
at the bounds f = −f :

∂f XS(f ) |f=f = ∂f XS(f ) |f=f = 0.

The two constants of integration A and B can be obtained in closed
form but their expression is lengthy and is therefore omitted.

We now turn to the non-stationary dynamics. At a given time
horizon t = T , we fix the predetermined non-stationary part
of the exchange rate at exit time X(T , f ) = 0. In terms of the
backward time τ = T − t , we write the transformation X∗(τ , f ) =

∗(τ , f )/ cosh(βf ). We then need to solve the following nonlinear
oundary value problem:⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

∂τX(τ , f ) −
1
2∂ff X(τ , f ) − β tanh(βf )∂f X(τ , f ) + αX(τ , f )

= +αf ,
X(0, f ) = 0

∂f X∗(τ , f ) |f=f = 0

∂f X∗(τ , f ) |f=f = 0

(23)

Writing X(τ , f ) = X∗(τ , f ) + XS(f ), Eq. (23) implies:
1
2
∂ff XS(f ) − β tanh(βf )∂f XS(f ) + αXS(f ) = αf , (24)

∂τX∗(τ , f ) −
1
2
∂ff X(τ , f ) − β tanh(βf )∂f X(τ , (f )) + αX∗(τ , f ) = 0

While the first line in Eq. (24) has already being solved, the
econd line needs now to be discussed. Writing again X∗(τ , f )
osh(βf ) := Y ∗(τ , f ), we obtain:

τY ∗(τ , f ) −
1
2
∂ff Y ∗(τ , f ) +

[
β2

2
+ α

]
Y ∗(τ , f ) = 0. (25)

The boundary conditions given by Eq. (9) impose:⎧⎨⎩
∂f X∗(τ , f ) |f=f = 0 ⇒

{[
∂f Y ∗(τ , f )

]
− β tanh(βf )Y ∗(τ , f )

}
|f=f = 0,

∂f X∗(τ , f ) |f=f = 0 ⇒
{[
∂f Y ∗(τ , f )

]
− β tanh(βf )Y ∗(τ , f )

}
|f=f = 0.

(26)
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We express the solution Y (τ , f ) as Y ∗(τ , f ) = φ(τ )ψ(f ), and
roceed to solve this equation by separation of variables and
xpansion over the basis of a complete set of orthogonal eigen-
unctions. The solution can be expressed as Y ∗(τ , f ) = φ(τ )ψ(f ),
nd therefore we can write it as

φ̇(τ )
φ(τ )

= λk =
1
2
ψ ′′(f )
ψ(f )

− ρ

here ρ =

[
β2

2 + α

]
.

The time-dependent part solves to ψ(τ ) = exp(τλk), and
the fundamental-dependent part can be written as the ordinary
differential equation

ψ ′′(f ) − 2(λk + ρ)ψ(f ) = ψ ′′(f ) + 2Ω2
kψ(f ) = 0.

Solving for ψ one obtains the eigenfunctions

ψk(f ) = c1 cos
(√

2Ωkft
)

+ c2 sin
(√

2Ωkft
)
.

Sturm–Liouville theory allows us to state that on the interval
[−f ,+f ], one has a complete set of orthogonal eigenfunctions
ψk(f ) satisfying Eq. (9) which form an orthogonal basis for the 2f̄ -
well-behaving functions space. Smooth-fitting conditions impose
c1 = 0, c2 = 1 and we obtain the form of the eigenfunctions

ψk(f ) = sin
(√

2Ωkf
)

∈ [f , f ], k = N+, (27)

here each eigenvalue Ωk solves the transcendental equation:

2Ωk cot
(√

2Ωkf
)

= β tanh(βf ). (28)

s given by (27). By regularity of the Sturm–Liouville problem we
now that the eigenvalues are real and span a discrete spectrum:

Ωk} :=
{
Ωk(β, f )

}
, k ∈ N+.

and can therefore be ordered as:

Ω1(β, f ) < Ω2(β, f ) < · · ·Ωk(β, f ).

The Fourier coefficients follow in their standard form, using
he stationary equation XS(ft ), and we finally obtain (10).

ppendix C. Proof of Proposition 2

We now briefly discuss the connection between risk and the
oneymoon effect, and how such effects cannot be obtained when
he destabilizing effects of risk shocks in the fundamental are too
trong. For illustrative purposes, let us consider a baseline case
f our model in a symmetric band [−f , f ] around the parity 0,
nd let us compare our model with the standard Gaussian one.
mitting time dependency, we have again the framework given
y

= f +
1
α

E {dX}

dt
,

hich leads to the following pair of PDEs, depending on the form
f the fundamental process.

X = f +
1
2∂ff [X(f )] (Gaussian),

X = f +
1
2∂ff [X(f )] + β tanh(βf )∂f [X(f )] (Ours).

e now focus on the stationary regime for which we obtain the
eneral solutions:

X(f ) = f + A0 sinh(ρ0f ), (Gaussian),
sinh(ρβ f )
X(f ) = f + Aβ cosh(βf ) , (Ours),

13
where ρβ =
√
β2 + 4α and Aβ is a yet undetermined amplitude.

We now apply the smooth fitting procedure at the target level
+f̄ .8

For the standard Gaussian framework we have X(f ) ↦→ X0(f ) =

+ a sinh(ρ0f ), since β = 0 and consequently ρ ↦→ ρ0 :=

√
2α
σ2 .

We therefore have :

X0(f ) = a tanh(ρ0f ) + f , ρ0 =

√
2α
σ 2 ,

which is the same result as in the standard Gaussian model.
In particular, denote W ∈ R the contact point with the target
boundary ±f̄ , we have⎧⎨⎩f̄ = X0(W ) ⇒ F = W + a tanh(ρ0 W ),

0 = 1 + ρ0a cosh(ρ0 W )
(29)

ecause of the smooth-fitting boundary conditions on the first
erivative. From the second line in Eq. (29), we conclude imme-
iately that:

=
−1

ρ0 cosh(ρ0 W )
.

and accordingly, we end with:

X0(f ) = f −
sinh(ρ0f )

ρ0 cosh(ρ0 W )
(30)

urthermore, we can verify that W ∈ R+ for all values of the
arameter ρ0 > 0. Eq. (30) implies that:

W − F =
tanh(ρ0 W )

ρ0
.

It can be immediately seen that the last equation always
possesses a single solution W ∈ R+. Let us now examine the
paper’s main framework, the case where β > 0. In this case, for a
target zone with band size F and a smooth contact point W , we
ave:⎧⎪⎪⎨⎪⎪⎩
F = W + a sinh(ρW )

cosh(βW ) + ω tanh(βW )

0 = 1 +
a

cosh(βW ) [ρ cosh(ρW ) − β sinh(ρW ) tanh(βW )]
+

ωβ

cosh2(βW )
.

(31)

The second line of the last equation implies:

a = −
cosh2(βW ) + βω

cosh(βW ) cosh(ρW ) [ρ tanh(ρW ) − β tanh(βW )]  
:=∆

.

From the last line, let us consider the equation ∆ = 0. First
we remember from the very definition that ρ ≥ β and hence the
quation:
ρ

β
tanh(ρW ) = tan(βW ) ⇔ ∆ = 0.

Since ρ

β
> 1 the last equation necessarily admits a solution

±Wc . Note in addition that for a pair of βs such that β1 < β2, we
ave:

1 > β2 ⇔ Wc,1 < Wc,2 (32)

8 Due to the symmetry, we have here only one amplitudeA to determine
since only one boundary needs to be considered.
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and for β → ∞, we have Wc → 0. Now from W solving the first
line of Eq. (31), we may have the alternatives:

(a) Wc < W ,

(b) Wc ≥ W .
(33)

ince the contact point Wc decreases as β increases, there exists
βe for which Wc = W . For all β > βe, standard boundary

itting techniques cannot be applied as in the Gaussian case, and
ence the limit W = Wc explains the regime shift observed in the
pectrum. This is due to the fact that for large β the honeymoon
ffect range becomes effectively large enough to preclude the
ossible existence of a target zone. The eigenvalue jump can
e obtained by examining the boundary conditions given by
26), and separating the contribution to the smooth-fitting at the
oundaries given by the eigenfunction from the one given by the
undamental drift and obtain:

∂f sin
(√

2Ωkft
)

sin
(√

2Ωkft
) − β tanh(βft ) = 0.

By noticing that β tanh(βf ) is equivalent to βB, and is thus the
mean-preserving spread caused by increases in fundamental risk,
one obtains

∂fψk(Ωk, ft )
ψk(Ωk, ft )

− MPS(β, ft ) = 0

and we obtain (13).

Appendix D. Noise sources driving the fundamental

Let us now assume that the fundamental is driven by a pair of
noise sources, namely (i) composite shocks vt and (ii) fluctuations
in the money supply mt , given by Gaussian noise around a drift
µ. We therefore add another source of noise, but we are not
necessarily increasing the risk in the fundamental process. We
then have{dft = σ1dW1,t + dmt ,

dmt = µdt + σ2dW2,t , mt=0 = m0.
(34)

where the noise sources dW1,t and dW2,t are two independent
White Gaussian Noise (WGN) processes. We then obtain ft as a
Gaussian process, since trivially

dft = µdt +

√
σ 2
1 + σ 2

2 dWt

nd we are exactly in the standard framework (in the literature
t is usually the case that µ = 0), only with a change in variance.
If however we wish to incorporate a general increase in risk, and
one that may represent the force that was discussed in Section 2,
we can write the following more general framework:{dft = σ1dW1,t + dmt ,

dzβ,t = ζ (β; zt )dt + σ2(β)dW2,t , zt=0 = 0.

where β ≥ 0 is a control parameter and the repulsive drift
ζ (β; z) = −ζ (β; −z) < 0 models an extra risk source via a
dynamic zero mean process. We parametrize risk with β , and
therefore β = 0 simply implies σ2(β) = ζ (0; zt ) = 0 implying
that the process is Gaussian and driven entirely by the composite
 b

14
shock process. Our candidate for ζ is the DMPS process:

dft = σ1dW1,t + dzt = β tanh(βzt )dt + σ1dW1,t + σ2(β)dW2,t

⇓

dzt = β tanh(βzt )dt +

[√
σ 2
1 + σ 2

2 (β)
]
dWt , zt=0 = 0.

where we used the fact that the difference between two indepen-
dent WGN’s is again a WGNwith variance as given in the previous
equation. Alternatively one may formally write:

dft = σ1dW1,t + β tanh

⎡⎣β zt  
(ft − σ1W1,t )

⎤⎦ dt + σ2(β)dW2,t =

β tanh

⎡⎣β zt  
(ft − σ1W1,t )

⎤⎦ dt +

[√
σ 2
1 + σ 2

2 (β)
]
dWt ,

sing the initial Eq. (5) and the previous equation and applying
tô’s lemma to the functional X(ft , t), we obtain:

1
α

⎧⎪⎨⎪⎩∂tX(f , t) + ∂f X(f , t)E
{
β tanh

[
β(ft − σ1W1,t )

]}  
=β tanh[β(f )]

+
[
σ 2
1 + σ 2

2 (β)
]
∂ff X(f , t)

⎫⎪⎬⎪⎭ = Xt − ft

(35)

n Eq. (35), the under-brace equality follows since all odd mo-
ents in the expansion of the hyperbolic tangent vanish and the

anh(x) is itself an odd function. Now, normalizing so as to have
σ 2
1 + σ 2

2 (β)
]

= σ 2, we are in the nominal setting of our paper.

ppendix E. Alternative interpretations of risk

Destabilization is intrinsically connected to risk in the funda-
ental process. Besides the structural interpretation of risk as
temming from time-varying investor risk aversion, one could
hink of a variety of other interpretations for the parameter λ of
ncreasing risk, which generates mean-preserving spreads in the
ensity of the exchange rate fundamentals. A quick glance at the
eft-hand panel of Fig. 11 shows that the difference in inflation
xpectations, one of the key fundamentals in the determina-
ion of exchange rate target zones, is undoubtedly non-Gaussian,
xhibits substantially heavier tails and presents bimodal tenden-
ies stemming from both inflationary and deflationary pressures
hifting probability away from the center. Such risk dynamics
annot be represented by the variance of Gaussian fluctuations,
s they cannot affect the distribution tails, but rather requires the
resence of forces that increase the tendency of the fundamental
rocess to escape its long-run level. The right-hand panel of
ig. 11 shows the transition density of the DMPS process at an
rbitrary time for increasing risk, providing a better fit for the
mpirical densities.
Another way of interpreting the risk parameter of our frame-

ork could be via the presence of capital flows, especially in
ow the magnitude and the drivers of capital flows matter in
etermining the stabilization effects. First, capital flows may be
riven by push factors creating cycles of bonanzas and sudden
tops seen with New Member States. Hansson and Randveer
2013) argue that capital flow dynamics were the key driver for
yclical developments in the Baltic ERM economies. This might
e an issue for a small target zone country if the capital flows
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Fig. 11. Estimated densities of the fundamental process (inflation expectations) for ERM-II currencies. (Left panel) Centered difference between Euro area inflation
expectations and target zone country inflation expectations, for the time each currency was in the target zone with the Euro. Kolmogorov–Smirnov tests greatly
reject each hypothesis of Gaussianity. The data for inflation expectations comes from the Euro Commission’s Joint Harmonized Consumer Survey. For more details
we refer to Arioli et al. (2017). (Right panel) Transition densities of the fundamental process with mean-preserving spreads (DMPS) at time t = 1, each with risk
ncreases in the direction of the arrow.
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enerate excess appreciation or depreciation pressure weakening
he feasibility of the target zone. This is particularly problematic
f there is a sudden stop with reallocation of capital flows to
ore productive economies in the target zone as seen during

he Eurozone crisis (Ghosh et al., 2020). Furthermore, assuming
he absence of macro-prudential tools, capital flow volatility may
enerate foreign exchange intervention volatility inside the target
one, as the use of interest rates as a monetary policy tool
an generate further pro-cyclicality in capital flows. This nexus
etween capital flows and target zone management may desta-
ilize the convergence in the inflation process of the target zone
ountry. This is the key source of additional risk in our setting.
onsider the real interest rate version of the UIP condition:

{dXt} = (rt − r∗

t )dt + E
{
dπt − dπ∗

t

}
,

here π∗ is the target country’s inflation measure and π is home
nflation. If there are high capital inflows that need to be counter-
cted by (unsterilized) intervention, this would generate a lower
eal interest rate of financing by putting downward pressure on
t . This additional supply of credit is likely to increase E {dπt}.
This would require an interest rate response by the national cen-
tral bank, in the absence of macro-prudential tools. We can see
that in this particular case, increasing interest rates may be pro-
cyclical to capital flows as long as the inflation process responds
positively to the interest rate hike, causing a loss of monetary au-
tonomy if the process is self-reinforcing. A destabilizing outcome
of this scenario would be if the inflation process does not respond
to the interest rate moves and causes an outflow of capital. This
would jeopardize the feasibility of the target zone and could
cause the gap between rt and r∗

t to become larger than before
entering the target zone. The standard approach of modeling risk
in the target zone does not consider the risk stemming from the
currency union itself. If the target currency union has real interest
rate changes through lower expected inflation surprises, it will
also affect the stability of the target zone through the capital
flow mechanism we have described.9 Lastly, we note that our
characterization of risk as destabilizations caused by capital flows

9 For simplicity, we do not consider the currency union having positive
nflation surprises, even though in a low real interest rate setting, it may lead
o capital flows to the target zone currency. This mechanism can be amplified
y presence of multiple currencies in the target zone with cross-currency
onstraints on movement versus the target currency (Serrat, 2000).
 s

15
can be further extended to any source of external risk, and our
model framework would still apply.

Appendix F. Attracting drift: mean-reverting dynamics

A similar discussion can be developed for mean-reverting
(Ornstein–Uhlenbeck) fundamental dynamics reflected inside an
interval [f , f ]. In this section, the fundamental is driven by the
mean-reverting dynamics:

df = λ(µ− f )dt + σdWt ,

here µ is the ‘‘long-run’’ level of the fundamental, and λ is now
he speed of convergence, to highlight the mean-reverting equiv-
lent of the DMPS process. Following the previous exposition, we
an obtain the full solution for the exchange rate X∗(t, f ) as the
olution of

tX +
σ 2

2
∂ff X + λ(µ− f )∂f X − αX = −αf .

s before, we have the stationary solution for a vanishing ∂t , and
ere it reads

S(f ) = A 1F1

[
α

2λ
,
1
2
;
λ

σ 2 (f − µ)2
]

+ B

√
λ

σ
(f − µ) 1F1

[
α

2λ
+

1
2
,
3
2
;
λ

σ 2 (f − µ)2
]

+

[
λµf + α

λ+ α

]
(36)

here 1F1[a, b; x] is the confluent hypergeometric function. The
integration constants A and B, as before, are determined via
smooth pasting at the target zone boundaries, namely:
∂XS(f )|f=f = ∂XS(f )|f=f̄ = 0. Note that if µ = 0, then A = 0.
Fig. 12 shows the stationary dynamics of the exchange rate as a
function of the fundamental, for different values of the long-run
level µ and noise variance σ . The band is assumed symmetric
around 0, and f̄ = 10%.

The associated Sturm–Liouville equation is now given by

σ 2

2
∂ff X + λ(µ− f )∂f X + αX = 0,

nd the spectrum of the process can be obtained explicitly by
olving a transcendental equation involving Weber parabolic
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Fig. 12. Mean-reverting stationary dynamics.
U
i∫
ylinder functions. As before, the complete solution is given by
n expansion on a complete set of orthogonal functions on the
arget band, namely:

∗(T − t, f ) = XS(f ) +

∞∑
k=1

ck exp[−(Ωk + α)(T − t)]ψ(Ωk, f ),

where the Fourier coefficients ck again impose the terminal con-
dition X∗(0, f ) = −XS(f ). As worked out by Linetsky (2005)
explicit though lengthy closed form expressions are obtainable
(see Eqs. (39) and (40)). For the case of a symmetric target
zone f = −f , an approximation valid for large eigenvalues Ωk,
(i.e. large k’s) is given in [L] and reads:

Ωk =
k2πσ 2

8f
2 +

λ

2
+ c0 + O

(
1
k2

)
c0 =

λ2

6σ 2 (4f̄
2
− 6f̄µ+ 3µ2). (37)

he normalized eigenfunctions, also up to O
(

1
k2

)
, read:

k(f ) = ±
σ

√
2
f̄ −1/2 exp

[
λ(f − µ)2

2σ 2

][
cos

(
kπ f
2f̄

)
+

2f̄
kπσ 2 φ(f ) sin

(
kπ f
2f̄

)]
φ(f ) =

λ2

6σ 2 f
3
−
λ2µ

2σ 2 f
2
−

[
λ

2

(√
2λ
σ

µ+ 1 + c0

)]
f + θµ (38)

While strictly speaking Eq. (37) furnishes very good estimates
or large k values, a closer look in [L] shows that even for low k’s,
k = 1, 2, . . .), acceptable approximations are also obtainable. In
particular, for k = 1, we approximately have:

τrelax ≃ [Ω1]−1
=

[
πσ 2

8f
2 +

λ

2
+ c0

]−1

.

For these mean-reverting dynamics, the interplay between
isk (here solely due to the noise source variance σ 2) and the
arget band width 2f on trelax is opposite compared to the DMPS
dynamics of Section 2.

The tendency of the fundamental f to revert to its long-
run level µ, for a narrow target band, generates an effect of
an increase in risk (variance) that is the opposite of the one
generated by an increase of β in the DMPS setting, because of the
16
latter’s tendency to escape from the mean. If the band is larger,
lower levels of σ initially increase the relaxation time, ultimately
achieving a decreasing effect. In both cases, an increase in the size
of the target band requires a higher T in order for the target zone
to be feasible.

Finally, notice that for the O–U case that zero is always the
first eigenvalue (which is not surprising, given that it is an ergodic
process) and a regime shift is impossible.

Appendix G. Alternative to O–U dynamics: softly attractive
drift

We now present the model where we model the fundamen-
tal as an ergodic process with a softly attractive drift instead
of the Ornstein–Uhlenbeck dynamics. This framework has the
advantage of incorporating mean-reverting dynamics while re-
taining analytical tractability. By ‘‘softly attractive’’ drift we mean
the DMPS drift with opposite sign, i.e. −β tanh(βf ). This model
presents similar dynamics to the O–U framework, and allows for
a stationary time-independent probability measure. The marginal
difference with respect to the O–U dynamics is that the reversion
of the fundamental to the mean is softer, and the advantage
is that the full spectrum is available and the dynamics do not
require an approximation. The equation for the exchange rate
after applying Itô’s lemma is now given by

∂tX(t, f ) +
1
2
∂ff X(t, f ) − β tanh(βf )∂f X(t, f ) − αX(t, f ) = −αf .

(39)

sing the equivalent transformation as in the DMPS case, we plug
n Eq. (39) into Eq. (20) and obtain:

f cosh(βζ )∂tY (t, ζ )+

1
2

[
β sinh(βf )Y (t, f ) + cosh(βf )∂f Y (t, f )

]
−

β sinh(βf )Y (t, f ) − α
∫ f cosh(βζ )Y (t, ζ )dζ

= −αf .

(40)
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Now, taking once more the derivative of Eq. (40) with respect
o f , one obtains:

tY (t, f ) +
1
2
∂ff Y (t, f ) −

[
β2

2
+ α

]
Y (t, f ) = −α

f
cosh(βf )

. (41)

bserve now that Eq. (41) is once again equivalent to the standard
M motion case and we can repeat the same procedure we used
arlier. The spectrum will now include the eigenvalue zero since
e are dealing with a stationary case.
We now proceed as before and Eq. (41) reads:

−∂τY (τ , f )+
1
2
∂ff Y (τ , f )−

[
β2

2
+ α

]
Y (τ , f ) = −α

f
cosh(βf )

. (42)

onsider now the homogeneous part of Eq. (42), namely:

− ∂τY (τ , f ) +
1
2
∂ff Y (τ , f ) −

[
β2

2
+ α

]
Y (τ , f ) = 0.

As done before, the method of separation of variables leads us
o introduce Y (τ , f ) = φ(τ )ψ(f ) and the previous equation can
e rewritten as:

−∂τψ(τ )
ψ(τ )

+
1
2
∂ffψ(f )
ψ(f )

−

[
β2

2
+ α

]
= 0.

nd therefore we can write:⎧⎪⎨⎪⎩
−∂τψ(τ )
ψ(τ ) = λk,

1
2
∂ff ψ(f )
ψ(f ) −

[
β2

2 + α

]
= λk

Defining Ω2
k =

[
β2

2 + α

]
+ λk, the relevant eigenfunction

eads:

(f ) = c1 sin(
√
2Ωkf ) + c2 cos(

√
2Ωkf ).

Going back to Eq. (20), the boundary conditions at the borders
f the target zone f = −f reads:

f

[∫ f

cosh(βζ )ψ(ζ )dζ
]

|f=f = 0.

which implies that

cosh(βf )ψ(f ) ⇒ c1 = 0 and Ωk = (2k + 1)
π

2
√
2 f

. (43)

We note that Eq. (43) implies :

k =
(2k + 1)2π2

8f
2 −

β2

2
− α ≥ 0. (44)

Lastly, as expected, for the soft attractive case we are able to
derive the exact spectrum analytically and unlike in Proposition 2,
there is no spectral gap.
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