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Abstract

Many economic environments involve units linked by a network. I develop an econo-
metric framework that derives the dynamics of cross-sectional variables from the lagged
innovation transmission along bilateral links and that can accommodate general pat-
terns of how higher-order network effects accumulate over time. The proposed NVAR
rationalizes the Spatial Autoregression as the limit under an infinitely high frequency
of lagged network interactions. The factor-representation of the NVAR suggests that at
the cost of restricting factor dynamics, it naturally incorporates sparse factors as locally
important nodes in the network. The NVAR can be used to estimate dynamic network
effects. When the network is estimated as well, it also offers a dimensionality-reduction
technique for modeling high-dimensional processes. In a first application, I show that
sectoral output in a Real Business Cycle-economy with lagged input-output conversion
follows an NVAR. In turn, I estimate that the dynamic transmission of productivity
shocks along supply chains accounts for 61% of persistence in aggregate output growth,
leaving minor roles for autocorrelation in exogenous productivity processes. In a second
application, I forecast macroeconomic aggregates across OECD countries by estimat-
ing a network behind global business cycle dynamics. This reduces out-of-sample mean
squared errors for one-step ahead forecasts relative to a dynamic factor model by -12%
(quarterly real GDP growth) to -68% (monthly CPI inflation).
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1 Introduction

In economics, we often encounter a cross-section of units linked by a network of bilateral
ties, such as sectors connected through supply chains or individuals acquainted to each other.
A large theoretical and empirical literature documents that networks amplify idiosyncratic

shocks and generate comovement in cross-sectional variables at a given point in time.!

How network-induced comovements unfold over time, however, is less well understood.
The literature predominantly assumes contemporaneous network interactions (e.g. Bramoullé
et al. (2009); Acemoglu et al. (2012); Elliott et al. (2014)), embodied by the Spatial Autore-
gressive (SAR) model. This implies that an innovation contemporaneously transmits along
network connections of all orders. The resulting static framework is useful for “networked”
steady state comparisons. Among the few studies that consider lagged network interactions,
most posit that network effects materialize exactly one link per period (e.g. Long and Plosser
(1983); Golub and Jackson (2010); Elhorst (2012)). While useful for analyzing the quali-
tative implications of the laggedness of network interactions, this assumption is of limited
use for empirical work concerned with “networked” transition dynamics. Zhu et al. (2017)
generalize the lag length, but the generality of their empirical framework and its relation
to structurally motivated models of contemporaneous or single-lagged network interactions
remain unclear.

I construct an econometric framework that derives the dynamics of cross-sectional vari-
ables from the lagged innovation transmission along bilateral links between cross-sectional
units: the Network-VAR (NVAR). Like existing studies, I assume uni-directional transmis-
sion? and time-invariant links. Unlike existing studies, the model can accommodate general
patterns on how innovations travel along links over time and, consequently, how network
connections of higher order accumulate as time progresses. To obtain this generality, I dis-
tinguish between the frequency of network interactions and the frequency of observation.
As the former diverges to infinity, the impulse-response to contemporaneous high-frequency
disturbances and the networked covariance among observations approach their counterparts
from the SAR model. The same impulse-response is also obtained when considering long-
term effects of permanent innovations. By taking a stance on the timing of network effects,
the NVAR goes beyond such steady state comparisons and characterizes transition dynamics.

In the NVAR, the interdependence of observations y;; and y;;_ arises as the interplay of
the temporal distance between periods ¢ and t — h and the cross-sectional distance between
units ¢ and j encoded by the network. Under a sparse network, this dependence is modeled
parsimoniously; the dynamic comovement among all series is rationalized by the dynamic
innovation transmission along a few bilateral links among units. This is akin to the assump-
tion that longer-term dynamics are driven by a set of shorter-term dynamics, upheld by the

1See work surveyed in Carvalho and Tahbaz-Salehi (2019); Bramoullé et al. (2016) and the following
literature review.
%j.e. either downstream or upstream, the distinction being relevant only for directed networks.
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general class of VARMA (p, ¢) models. The dynamics under the NVAR can be represented
by a Dynamic Factor Model (DFM) whereby the number of factors equals the rank of the
network adjacency matrix. At the cost of restricting their dynamics, the NVAR naturally
incorporates sparse factors as locally important nodes in the network.

The NVAR is useful in two distinct kinds of work with cross-sectional time series. By
conducting inference on the timing of innovation transmission along bilateral links, it can
be used to estimate dynamic network effects. Thereby, the network can be taken as given or
it can be inferred from dynamic cross-correlations in the data, possibly aided by shrinking
towards observed links. When both the network and effect-timing are estimated, the NVAR
is also applicable as a dimensionality-reduction technique for modeling high-dimensional
processes. Conditional on a network, inference on the timing of network effects boils down
to a linear regression with covariates that summarize lagged observations using bilateral links.
Joint inference is implemented by iterating on analytically available conditional estimators,
with Bayesian as well as frequentist interpretations. I illustrate each of these two model uses
with a respective application.

In the first application, I show that the NVAR approximates the process of sectoral output
in a Real Business Cycle (RBC) input-output economy with lagged input-output conversion
(IOC). In turn, I evaluate the potential of lagged IOC to generate endogenous business cycles,
as suggested theoretically by Long and Plosser (1983). I generalize their one period-lagged
IOC by assuming that inputs from the past p periods are imperfectly substitutable in the
production at any time ¢ — a stand-in for a range of frictions that prevent just-in-time input-
sourcing — and by allowing the model frequency to differ from the observational frequency.
I characterize impulse-responses under a difference-stationary TFP process with persistent
aggregate and sectoral shocks. The analysis illustrates the differing implications of lagged
IOC and persistence in exogenous shocks for the dynamics of sectoral and aggregate output;
the former formalizes the idea that idiosyncratic changes in, say, energy production take
time to feed through the networked economy, while the latter merely prolongs the effects of
each round of transmission. Using input-output tables and monthly output growth across
23 manufacturing sectors in the US economy, I estimate their respective contributions to
persistence in aggregate output growth.

The results suggest that lagged IOC explain 61% of the autocorrelation in aggregate
output growth. With persistence in aggregate TFP, this number grows to 93%, leaving
little room for persistence in idiosyncratic sectoral TFP. My analysis reveals that shocks to
more central sectors not only affect aggregate output more strongly in the long run — as
established by Acemoglu et al. (2012) —, but they also tend to materialize more sluggishly.
This relationship, however, is far from clear-cut; for example, owing to its position at the
top of supply chains, a TFP shock in the primary metals sector materializes more slowly
than a shock to the food and beveredge sector, despite similar long-term effects.

In the second application, I investigate the merits of the NVAR as a dimensionality-
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reduction technique for forecasting high-dimensional (cross-sectional) processes. 1 consider
monthly industrial production growth, monthly CPI inflation and quarterly GDP growth
across OECD countries. Under a sparse network, the NVAR models the dynamics parsimo-
niously; the dynamic comovement among all series is rationalized by the dynamic innovation
transmission along a small set of bilateral links among countries. In line with that, I esti-
mate the network by shrinking links to zero using a Lasso-penalty. I also consider alternative
specifications that apply a Ridge-penalty and shrink to observable links.

In my setting, the NVAR reduces out-of-sample mean squared errors by 13%-68% relative
to the ex-post best-performing DFM. This corroborates my equivalence result: the NVAR
better forecasts these series, whose cross-country dynamics seem to be driven by many micro
links rather than a few influential countries. This corresponds to a setting with numerous
sparse factors and differing sets of non-zero loadings across units or, equivalently, a sparse,
yet high-rank network adjacency matrix.

Contribution There is a large econometric literature on spatial and network-interactions
(Manski, 1993; Kelejian and Prucha, 2010; Anselin, 2003; Lee, 2007; Bramoullé et al., 2009;
Shalizi and Thomas, 2011; Kuersteiner and Prucha, 2020; de Paula et al., 2024). Tt is
concerned with identifying spatial/peer-effects and accounting for heterogeneity in cross-
sectional and panel data-regressions.® It predominantly assumes contemporaneous network
interactions, as exemplified by the canonical SAR model. Among the few studies that con-
sider lagged interactions (Elhorst, 2012; Knight et al., 2016), Zhu et al. (2017) cast them in
an an explicit time series model, generalizing the lag length and discussing stationarity and
large T-inference. I characterize Granger causality in their environment as the cross-sectional
innovation transmission along network connections of different order, formalizing the idea
that network effects materialize dynamically over time. In turn, I generalize this mapping
between network connections and dynamics, which allows me to derive the SAR model as the
limit of an underlying process driven by high-frequency lagged network interactions.* Like
Pinkse et al. (2002); Lam and Souza (2020); Qu et al. (2021); de Paula et al. (2024) do in
the static environment, I discuss inference on the network itself — not only the effect-timing
—, which institutes the NVAR as a dimensionality-reduction technique — not only a tool for
estimating dynamic network effects — and motivates my equivalence result to factor models.

Many studies incorporate networks in time series analyses. Following Diebold and Yilmaz
(2009, 2014), some researchers interpret quantities of a given time series model — typically
a VAR — using network analysis (Billio et al., 2012; Anufriev and Panchenko, 2015; Chen
et al., 2025). Other studies restrict time series models using networks (Carvalho and West,
2007; Chudik and Pesaran, 2011; Davis et al., 2016; Ahelegbey et al., 2016; Zhu et al., 2017;

3A separate strand devises methods for dyadic data, i.e. the case when edges rather than nodes in the
network are observed (Graham, 2020).

4Barigozzi et al. (2025); Maung (2022); Armillotta and Fokianos (2023) extend Zhu et al. (2017) along
different dimensions than I do.
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Barigozzi and Brownlees, 2018; Billio et al., 2019; Caporin et al., 2021; Martin et al., 2025).
Among them, the Global VAR (GVAR) (Pesaran et al., 2004; Chudik and Pesaran, 2014)
restricts static and dynamic interdependencies across units in a panel-VAR using exogenous
network-weights — e.g. bilateral trade —, enabling the estimation of many interconnected
VAR models under a weak exogeneity assumption.® The NVAR also belongs to this second
category; it restricts innovations in a (cross-sectional) VAR to transmit along bilateral links
among variables (units), which leads to rich patterns of multi-step causality as in Dufour
and Renault (1998). In contrast to the GVAR and most “networked” time series approaches
above, I focus on a single variable per cross-sectional unit and a single type of connections
among them, and I entertain the assumption that innovations transmit along bilateral links.
This allows me to characterize a range of theoretical properties — including the relation to
static SAR models and DFMs —, to structurally motivate the NVAR with an RBC production
economy, and to efficiently conduct inference by relying on analytical conditional estimators.

When the network is estimated parsimoniously, the NVAR also addresses the literature
on dimensionality-reduction methods for time-series modeling. By reducing the number
of parameters and applying shrinkage priors, it leverages both approaches available for ad-
dressing the large parameter problem in the Wold representation (Geweke, 1984). Compared
to standard shrinkage methods (Litterman, 1986; Tibshirani, 1996), it applies shrinkage to
links — which in turn summarize the information in predictors at all lags — rather than to
predictors themselves. Compared to reduced rank regression (Velu et al., 1986) or factor
models (Geweke, 1977; Stock and Watson, 2002), it finds the linear combination to summa-
rize the information in predictors by relying on network connections of different order and,
ultimately, on bilateral links among units. While many of the network-restricted time series
approaches mentioned above appear to have a reduced-rank representation — consider the
GVAR’s construction of weighted averages of other countries’ variables —, the simple setup of
the NVAR allows me to characterize this representation explicitly. Owing to the equivalence
result that compares the NVAR to the DFM — corroborated by their relative performance
forecasting the three processes I consider —, the NVAR contributes to the long-standing lit-
erature on sparse factors (Boivin and Ng, 2006; Onatski, 2012; Bai and Ng, 2019; Fan et al.,
2022; Anatolyev and Mikusheva, 2022; Freyaldenhoven, 2025). Interestingly, in my applica-
tion, a sparse network is preferred to a dense one, suggesting the presence of sparse rather
than weak factors and running counter to the results of Giannone et al. (2021).

With the other application of the NVAR, I contribute to the series of efforts to mi-
crofound aggregate dynamics using production networks (see Horvath (1998, 2000); Dupor
(1999); Shea (2002); Carvalho (2010); Foerster et al. (2011); Acemoglu et al. (2012); di Gio-
vanni et al. (2014) and survey of Carvalho and Tahbaz-Salehi (2019)). These studies rely

°Holly and Petrella (2012); Dahlhaus et al. (2021); De Graeve and Schneider (2023); Chodorow-Reich
et al. (2025) exploit networks for shock-identification in VARs. Bykhovskaya (2023) models the temporal
evolution of a weighted network, which belongs to the realm of dyadic regressions (Graham, 2020) and
(dynamic) network-formation rather than -effects.

6See Canova and Ciccarelli (2013) for an overview of panel-VAR approaches.



This Version: 2026-01-23 5

on contemporaneous IOC — mirroring the prevalence of contemporaneous interactions in
econometrics and in the related study of spatial economies (Desmet and Parro, 2025) — and
show that the production network greatly contributes to aggregate volatility. A notable ex-
ception is Long and Plosser (1983), who show that lagged IOC endogenizes business cycles
— i.e. persistence in aggregates —, without relying on autocorrelation in exogenous shocks,
non-rational expectations, or other frictions. Their analysis points to a more prominent role
for production networks than as mere amplification devices of existing dynamics; it formal-
izes (qualitatively) the notion that sectoral shocks take time to feed through the economy,
an idea well-accepted in the trade literature (Alessandria et al., 2010; Liu and Tsyvinski,
2024; Antras and Tubdenov, 2025). Carvalho and Reischer (2021) characterize persistence
in the Long and Plosser (1983)-economy and show that its implied evolution due to observed
changes in the US input-output network accounts well for empirical measures of the changing
persistence of aggregate output growth. Their analysis suggests that the endogenization of
business cycles through lagged IOC is not only theoretically attractive, but has empirical
merit as well. I quantify the empirical salience of Long and Plosser (1983)’s hypothesis by
taking an RBC economy with general lags in IOC to the data. While lagged I0C leads
to the same steady state as under contemporaneous IOC, it decomposes the long-term re-
sponses to granular TFP shocks, with distinct transition dynamics from those generated by
autocorrelated TFP processes. By conducting inference on the timing of I0C along with
the autocorrelations and variance of exogenous TFP processes, I quantify the contribution
of lagged IOC to the entire autocorrelation function of aggregate output growth, supple-
menting and extending earlier decompositions of aggregate volatility (Foerster et al., 2011;
di Giovanni et al., 2014; De Graeve and Schneider, 2023).

Outline The rest of this paper is structured as follows. The model and its properties are
discussed in Section 2. Section 3 treats inference. In Section 4, I study how input-output
connections affect output dynamics in the US economy. In Section 5, I illustrate the merits
of the NVAR as a dimensionality-reduction technique. Section 6 concludes.

2 Dynamics via Lagged Network Effects: Theory

After providing some basic background on networks in Section 2.1, I present the NVAR and
its main properties in Section 2.2, and I discuss further properties in Section 2.3. Details
and proofs are in Section A. The discussion of inference is deferred to Section 3.

2.1 Bilateral Connections in Networks

A network is represented by an n x n adjacency matrix A with elements a;;. I consider a
directed, weighted and possibly signed network; a;; € [—1, 1] shows the sign and strength of
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the link from unit ¢ to unit j, with a;; # a;; possibly. If a;; = 0, I say unit ¢ is not connected
to unit j. Self-links are permitted: a; 7# 0. The set of bilateral links {a;;}; j—1., give rise to
a myriad of higher-order (hyper-dyadic) links among units, referred to as walks.”

Definition 1 (Walk). A walk from i to j of length K > 2 is

K

Quyug,ux 1 = | | Qupupy, > U1 =1, U2 =].
k=1

A walk is a product of bilateral links that lead from unit 7 to unit j over intermediary
units. It is non-zero if all of these units are sequentially connected. Simple matrix algebra
reveals that [A%];; contains the sum of walks from 7 to j of length K. I refer to this quantity
as the Kth-order connection from ¢ to j. Consider the following example:

0 0 .8 0 .72 0 50 0 .14
A=1|7 0 2|, A2=|0 .18 56|, A*=].13 50 .04
0 .9 0 63 0 .18 0 .16 .50

Even though unit 3 is not directly connected to unit 1 (a3, = 0), there exists a second-order
connection via unit 2 (asgaz; # 0). In a production network, unit 1 could be a supplier to
unit 2, who in turn is a supplier to unit 3.

2.2 Lagged Innovation Transmission via Bilateral Links

Consider a stationary cross-sectional time series y; = (Y1, ..., Ynt)” With mean zero. Under
an NVAR, the dynamics of g, are driven by the lagged transmission of innovations wu; along
bilateral links a;; among cross-sectional units 7,5 = 1 : n. Throughout, I assume that links
are fixed over time and that transmission is uni-directional: the direct link from i to j, a;;,
transmits innovations from 5 to 7. Innovations u; may be cross-sectionally correlated.

2.2.1  Single Lag in Innovation Transmission: NVAR(1,1)
Consider a VAR(1) with an autoregressive matrix proportional to the adjacency matrix A:
Yo = @Ay +ug (1)

for a € R. Under this process, the one step-ahead expectation of y;; is proportional to
the weighted sum of one period-lagged values of y;; for all units j to which ¢ is directly
linked: E; 1[yi] = ] aijy;s1. For example, in the RBC input-output economy of
Long and Plosser (1983), the expected output in sector i tomorrow is a weighted average

"Whenever convenient to simplify notation, I write a : b for the set of integers {a,a + 1,...,b}, a < b.
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of the production in its supplier-sectors j today. In Golub and Jackson (2010), individual
1’s expected opinion tomorrow is a weighted average of their friends’ opinions today. For
reasons clarified below, I dub this process NVAR(1,1).

Under Eq. (1), dynamics of y; at horizon h > 1 are driven by hth-order network connec-
tions. More precisely, assuming a # 0, y; Granger-causes y; at horizon h iff there exists an
hth-order connection from i to j:®

GCZ‘ _ Witsn  Oirsn _ [ahAh]

h>1.
8yjt ant -

iJ

Fig. 1 illustrates these Granger-causality dynamics — also referred to as Generalized
Impulse-Response Functions (GIRFs)? — for the network from Section 2.1 under o = 1. It
points to two insights. First, lagged network interactions generate persistence; even white
noise-innovations {ujt};”:l lead to persistent reactions of y; because each u;; affects connected
units i # j with a lag.! This result is behind the endogenous business cycles in Long and
Plosser (1983)’s economy with lagged input-output conversion. Second, under this type of
persistence, network-connections affect not only the strength of impulse-responses, but also
their timing. For example, while unit 2 is directly linked to unit 1 and therefore experiences
the latter’s innovation with a lag of one period, unit 3 only has a second-order connection to
unit 1 and therefore reacts only after two periods. This result relates to Dufour and Renault

1 Tn the case

(1998), who point out that Granger-causality can take the form of chains.
of a (cross-sectional) time series driven by lagged innovation transmission along bilateral
links, their insight emerges naturally and their generally non-trivial conditions for Granger-
(non)causality boil down to the presence or absence of network connections of relevant order
between the relevant variables (units). As I show in the following, this holds even under a

more general transmission-timing than considered in Eq. (1).

While the process in Eq. (1) reveals useful theoretical insights in both macro- (Long
and Plosser, 1983) and microeconomics (Golub and Jackson, 2010), it is too restrictive for
most empirical work. It assumes that innovations transmit at the speed of one link per
period and that transmission materializes completely within a single period. This implies,
for instance, that in response to news gathered by a friend of a friend, j, an individual
1 adjusts their opinion in two periods, not earlier, not later. Similarly, an innovation to
a sector j’s output affects the output of other sectors i located two positions downstream
(“customers of customers”) in exactly two periods. In either case, earlier responses are ruled

8In other words, given all other variables yy; for k # j, y;; is useful in forecasting y; ¢+ iff there exists
an hth-order connection from 7 to j.

9The GIRF is “generalized” because it disregards shock identification, but considers the propagation of
reduced form errors u; over future time periods t + h, h > 1.

Furthermore, each individual y,; reacts persistently to its own white noise-innovation u;; as long as there
is a cycle in the network, i.e. a walk from j to j. Notably, this can hold even without a self-link — a;; = 0.

HSpecifically, even if a series x; does not Granger-cause a series y; at horizon 1, under the presence of a
third series z;, x; might Granger-cause y; at higher horizons as the causality could run from x; to z; to y.



This Version: 2026-01-23 8

10 g O elo GC,

0.5} I

0.0 I ol =
10 G0 GCo, GC,,

0.5

-
E

0.0

1o, GOy G, GC,y,

0.5

:

0.0
0123456 0123456 0123456

h h h
Figure 1: Example of Generalized Impulse-Responses under an NVAR(1, 1)

Notes: Panel (i, j) shows GC?]. = [@"A"];; under a = 1. Note that GC% = 1if ¢ = j and zero otherwise, i.e. by definition, the
contemporaneous responses to all but a series’ own innovation are zero.

out altogether, and later adjustments only occur if ¢ has a third- or higher-order connection
to j. In the following, I generalize the timing of lagged network effects by extending the
simple process above along two dimensions.

2.2.2  Multiple Lags in Innovation Transmission: NVAR(p, 1)

Let the cross-sectional time series y; evolve according to a VAR(p), where each autoregressive
matrix is proportional to the same network adjacency matrix A:

Y= Ay + . F Ay, U, (2)

with a = (o, ..., ;)" € RP. I dub this process NVAR(p, 1). It simplifies the process presented
in Zhu et al. (2017) by not distinguishing self- and cross-links, by abstracting from restrictions
on the rows of A, and by disregarding the intercept and covariates. These simplifications
prove useful for characterizing a range of proprties in this section, for conducting inference
in Section 3, and for taking a macroeconomic model of lagged input-output conversion to
the data in Section 4.

Compared to Eq. (1), under the NVAR(p, 1) with p > 1, dynamics at horizon h are
affected by lower-order connections:

Proposition 1 (Granger-Causality in NVAR(p, 1)).

Let y, evolve as in Eq. (2). Then, Granger-causality from y; to y; at horizon h is a linear
combination of connections from i to j of order k € {k,k+1,...,h}, where k = ceil(h/p)."?
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Under a; > 0V [ and a;; > 0, Proposition 1 implies that y; Granger-causes y; at horizon
h iff there exists a connection from i to j of at least one order k € {k,k+1, ..., h}. The proof
of Proposition 1 in Section A.1 establishes that the GIRF is of the form

i,
o = k@) [A et () [A],

(3)
Each coefficient cZ for k = k : h is a polynomial of {®;};—1, and shows the importance of
connection-order k for the impulse-response at horizon h. If ¢ has a first- and no higher-
order connections to j, then 0y, ;4 /0u;; = opa;j for h =1 : p and zero otherwise. Hence,
the NVAR(p, 1) specifies that dynamics are driven by the transmission of innovations along
direct links lagged over p periods. « determines how the transmission is spread out over
these p periods and, consequently, how transmission along higher-order connections accrues
as time progresses. Note that the transmission is assumed to be the same for all unit pairs
(,7) and invariant over time.

2.2.3  Multiple Rounds of Innovation Transmission: NVAR(p, q)

To further generalize the timing of innovation transmission, suppose that we observe 7, ~
NVAR(p, 1) every ¢ € N periods; let the observed series y; evolve according to the state
space system

gT = OélAngl + ...+ OépA’gT,p + 17,7_ s (4)
Yrjqg = gr lfT/q eN.

I dub this process NVAR(p, q). ¢ indicates the relation between the frequency of network
interactions, at which g, evolves, and the frequency at which data {y;};—1.r is observed. If
g = 1, the two coincide and, trivially, y; and 7, are the same NVAR(p, 1) process. Instead,
if ¢ > 1, then network interactions occur at higher frequency than data is observed. For
example, under yearly observations, ¢ = 4 implies quarterly network interactions. As a
result, multiple rounds of transmission occur in a single observational period and dynamics
at horizon h are affected by higher-order connections, k > h:

Proposition 2 (Granger-Causality in NVAR(p, q)).

Let y; evolve as in Eq. (4) for some ¢ € N. Then, Granger-causality from g; to §; at horizon
h is a linear combination of connections from i to j of order k € {k,k+ 1,...,hq}, where

k = ceil(hq/p).*?

12¢eil(x) rounds z € Q up to the next integer.
13 Assuming again oy > 0V [ and a;; > 0, Proposition 2 implies that ¢j; Granger-causes ¢; at horizon h iff
there exists a connection from 4 to j of at least one order k € {k,k + 1, ..., hq}.
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Eq. (4) implicitly assumes that g, is a stock variable; every ¢ periods we observe a
snapshot of it. To accommodate a flow variable 7, we can model y; as

gr = alAgT—l + .+ O‘pAgT—p +u, (5)
yT/q = (g‘r + ...+ gT*qul)/q if T/q €N )

with similar properties as under Eq. (4).M

By restricting the NVAR(p, ¢) in Eq. (4), we can accommodate more intricate relations
between the frequencies of network interactions and observation; for any ¢ € Q, ., we can
write ¢ = q1g2 with ¢, ¢;* € N, and we can model g, as an NVAR(p*, ¢2) with p* = p/q; € N
and with restricted parameters {a; };—1,+ to comply with the stated interpretations of p and
q. For example, under monthly observations, ¢ = 4/3 signifies that network interactions
occur (roughly) every three weeks. This amounts to observing every 4 periods a snapshot
of a weekly process that depends on its value in the past p 3-week-periods, i.e. on its value
three weeks ago, six weeks ago, and so forth, until p* = 3p weeks ago. Section A.4 elaborates.

2.3 Further Properties of the NVAR

Stationarity In the NVAR, the interdependence of y;; and y;;—; is an interplay of the
cross-sectional distance between units ¢ and j — encoded by the network — and the temporal
distance between periods t and ¢t —h. Correspondingly, Corollary 1 characterizes stationarity
in terms of eigenvalues of the network adjacency matrix A and roots of an AR process shaped
by the timing of innovation transmission along a single link, o.'®> Under p > 1, this simplifies
checking for stationarity, especially for large n. Note that the second statement requires the
AR(p) process (1—¢1L—...— ¢, LP)x; = v, with ¢y = ay\; to be stationary for each eigenvalue
A; of A, though AR-coefficients are typically required to be real-valued.

Corollary 1 (NVAR(p, ¢): Stationarity).

Let y; evolve as in Eq. (4) or Eq. (5) for some ¢ € N. Let u, ~ WN(0,3), suppose oy # 0
for at least one 1, and define a = Y1, |oy].

If [Ni| < 1/a for all eigenvalues \; of A, then y; is weakly stationary. Under oy > 0V I,
the implication is both-sided. Moreover, y; is weakly stationary iff for all eigenvalues \; of
A, the p X p matriz below has all eigenvalues inside the unit circle:

Oél)\i Oép>\i
Iy 0]

14See Section A.4 and Section 2.3. Analogous calculations apply if y: = §r + ... + Jr—gt1-

15Corollary 1 follows from Propositions 8, 9 and 13. Intuitively, the conditions ensure that
limg o0 c(a, k)A¥ = 0, for any polynomial in « of order k, c(a, k). By Proposition 1, this ensures that
the effects of disturbances vanish for higher horizons.
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Relation to SAR Model In all of economics, the literature overwhelmingly considers
contemporaneous network interactions as embodied by the Spatial Autoregressive (SAR)
model. If z = (x1,...,2,)" is the cross-sectional variable of interest, it posits

r=Ar+v. (6)

Provided that |\;| < 1 for all eigenvalues \; of A, we can write z = (I — A)™'v = (A +
A% + A3 + )v. Hence, the implicit assumption is that connections of all order materialize
in a single period. In line with that, Corollary 2 establishes that the response of x; to an
innovation v; in the SAR model from Eq. (6) is equal to the long-run response of y;; to a
persistent innovation ;, in the NVAR(p, ¢) from Eq. (4) or Eq. (5).1

Corollary 2 (NVAR(p, ¢q): Long-Term Response to Persistent WN-Innovations).
Let y; evolve as in Eq. (4) or Eq. (5) for some ¢ € N, and let x = aAzx+v witha =Y _|_, o.
Assume y; is weakly stationary. Then,

v . OYirn OYirn - Ox

lim T T 4 = =" =(I—aA)"t.
H—oo | Oy Olygi1 O+ H)q ov ( )

Both responses are given by the Leontief inverse (I —aA)™!, which is a sufficient statistic
for the long-term cross-sectional comovement. By taking a stance on the timing and fre-
quency of network interactions, the NVAR shows how any such long-term effects materialize
over time; it goes beyond steady state comparisons and characterizes transitional dynamics.'”

a temporally decomposes the spatial autoregressive parameter a.

The long-run is defined in terms of the frequency of network interactions. To justify
the use of the SAR at the expense of the NVAR, then, we need this frequency to be high
enough and the data frequency to be low enough. Corollary 3 formalizes this idea; if we
define the observed process y; as the sum of an underlying process g, evolving at the higher
frequency of network interactions, then, as this frequency diverges to infinity, 3;’s response
to a high-frequency innovation that occurs within observational period ¢ converges to the
response of z; to an innovation v; in the SAR model from Eq. (6)."

Corollary 3 (NVAR(p, q): Contemporaneous Response to Within-Period Innovation).
Let y, evolve as in Eq. (5) for some ¢ € N\{1}, and consider y,q. Then, for g €0: (q—1),

16Corollary 2 follows from Propositions 5 and 11.

"Note the correspondence between the timing of transitional dynamics and the timing of responses to
temporary innovations; as for any VAR, the long-term response to a permanent innovation is equal to the
cumulative response to temporary innovations.

18Corollary 3 follows from Propositions 5 and 12, applied for p; = 0.
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Difference to Exogenous Persistence Instead of relying on lagged network interac-
tions, one can also introduce transitional dynamics to the SAR model from Eq. (6) through
autocorrelated innovations v. This approach is predominant in macroeconomic studies of
input-output-economies; under fairly standard assumptions (see e.g. Carvalho and Tahbaz-
Salehi (2019)), sectoral production and prices evolve according to Eq. (6), whereby v is
Total Factor Productivity (TFP), which — across all areas of macroeconomics — is typically

assumed to follow an autoregressive process.”

Lagged network interactions and autocorrelated innovations lead to different kinds of
dynamics. As first illustrated in Fig. 1 for the NVAR(1,1), and as discussed throughout this
section for the general NVAR(p, q), lagged network interactions relate impulse-responses to
network-connections of different order, whereby the precise mapping is determined by « and
q. As a consequence, how strongly y; reacts to an impulse to y; depends on the strength
of network-connections from ¢ to j of relevant order, and how fast it reacts depends on
how many lower- as opposed to higher-order connections the two units share. For instance,
in the environment of Golub and Jackson (2010) this implies that an individual adjusts
their opinion faster after news shared by closer than more distant friends. Similarly, in the
context of Long and Plosser (1983) it means that a sector contracts its production faster
after a negative productivity shock to more immediate suppliers than to ones located further
upstream.

In contrast, autocorrelated innovations lead to exponentially decaying impulse-responses.
This shape is preserved when they are coupled with contemporaneous network interactions;
if 2, = aAzy + v, and (1 — p;L)v;e = €4, then

O 4n
=2 = [(I—ad)7 Y] . 7
fet = (1= aA) ], /) (7
The strength of connections from i to j merely scales the exponentially decaying impulse-
response; network connections merely amplify exogenous dynamics.

When the two sources of dynamics are combined, their qualitatively distinct contributions
remain. Consider an NVAR(p, 1), and let (1 — p;L)uj; = €j;. Then, using Proposition 1,

h
_ OYitrn OUjiin
85ﬁ —o an7t+h,l 85]-,15

ayi,tJrh

h h

=y Sun it 5L (o) [440], ) [} )
=0

Ou;y  Oej
gyt Jit 1=0

for k(I) = ceil(l/p). Under p; = 0, this expression simplifies to Eq. (3). Under p = 1
and a; = 1, it simplifies to Z?:o [Ah} i p?_l. While o determines the timing of innovation

191t can be split into an idiosyncratic and an aggregate component; see Section 4.
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Figure 2: Composition of Impulse-Responses under NVAR(2, 1) with AR(1)-Innovations

Notes: The top row refers to o = (.8,.2)’, the bottom row to a = (.2,.8)’. The left panel depicts the coeflicients cZ(h) : ¢ from

Eq. (3) for h =1 : 6, which illustrate how an innovation transmits along connection-orders (y-axis) over time (x-axis; horizons).
The dashed lines bound the relevant connection-orders in an NVAR(2,1): h € k(h) : h. The middle panel plots the IRF from
Eq. (8) under p; = .6 for a pair (i,7) with only a first-order connection. The right panel repeats this for a pair with only a
second-order connection.

transmission along direct links and, therefore, also the timing of transmission along all higher-
order connections from ¢ to j, p; determines the persistence of y;’s response after each round
of transmission.

Fig. 2 illustrates for an NVAR(2,1) and p; = .6, once under a = (.8,.2)" (top row),
once under o = (.2,.8)" (bottom row). The left panel depicts how connection-orders ac-
cumulate over horizons for these o, while the middle and right panels show the resulting
impulse-responses for two sectors that share only a first- or only a second-order connection,
respectively. Under a = (.8,.2)’, the innovation travels faster through the network than
under o = (.2,.8)’; in the former case, the transmission along a direct link (darkest blue dots
and bars) is strongest after one period, in the latter after two periods. Consequently, under
a = (.8,.2), the transmission along second-order connections (lighter blue dots and bars)
is strongest in the second period, under o« = (.2,.8)" in the fourth period. The exogenous
persistence ensures that the fraction p; of any transmission at horizon h is carried over to
horizon h + 1, a fraction p? to horizon h + 2, etc. (ever lighter gray bars).

Even under autocorrelated innovations, lagged and contemporaneous network interac-
tions yield the same long-run responses. This is shown by Corollary 4.2

20Corollary 4 follows from Propositions 6 and 11. In contrast to Corollary 2, it considers the long-run rather
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Corollary 4 (NVAR(p, ¢): Long-Term Response to Persistent AR(1)-Innovations).

Let y, evolve as in Eq. (4) or Eq. (5) for some q € N, and let xy = aAxy + vy, with a =
Yor_ oy, Assume y, and xy are weakly stationary, and assume (1 — p;L)uj; = ;0 ~ WN and
(1 —p;jL)vje = €je ~ WN, with p; € [0,1). Then,

OYir+m } ~ im |:85Ei,t+H n OTitvnm _ [([_GA)_I]@‘

Dy
lim | T
Oej O€j i 1—p;

H—oo | Ol Otj (1+H)q

H—oo

Networked Contemporaneous Correlation Trivially, contemporaneous network in-
teractions lead to contemporaneous correlation among {x;};—1.,; under Eq. (6), we have
V[z] = V[(I — A)~'v]. In this case, Cov(z;, ;) reflects the bilateral exposure between i
and j and their mutual exposure to third units, whereby exposure is determined by network
connections of all order.?! De Graeve and Schneider (2023) exploit this insight for shock
identification in the context of a production economy.

Networked contemporaneous correlation is obtained as soon as the network interaction-
frequency exceeds the frequency of observation, even under finite values of the former. In
an NVAR(p,q), we can define the “observable innovations” w; = y — E[y|F 1], where
Fi—1 = {U-1)¢ Ut-1)g-1, ---}- Under ¢ = 1, u; = 4, inherits the variance of the exogenous
innovations u,. Under ¢ > 1, u; is a linear combination of past u,, and its variance reflects
units’ bilateral exposure and mutual exposure to third units, whereby exposure is determined
by network connections of orders k € 1 : (¢ — 1), along which the underlying innovations
@, travel within a single period of observation. For example, if y; evolves as in Eq. (5) for
q =2, we have u; = U, + (I + ayA)i, 1. If 4, ~ WN(0,X) with ¥ = diag(o?, ...,02%), then

n
29 fi 2 2 2 2
Cov(uis, uje) = 20;1{i = j} + a1a40; + aqa;0; + aj E ik QKO -
k=1

Thus, u;; and u;; comove based on a;;, aj; and {a;,a;x }x=1.n. Propositions 14 and 15 state
V[uy| for the NVAR(p, q) processes in Eqs. (4) and (5) and general ¢ > 1.

Corollary 3 above establishes that an SAR for x is obtained in the limit when writing «
as the sum of an underlying process driven by lagged network interactions that evolves at an
ever higher frequency. In addition, by Proposition 3, the Normality-assumption v ~ N(0, X)
in the SAR model can be justified by temporally independent high-frequency innovations

than contemporaneous response of x, since the implicit assumption in the SAR model with autocorrelated
innovations is that they evolve at observational frequency.

2'We have V[z] = V[(I + A+ A? + ...)v], provided that |\;| < 1 for all eigenvalues \; of A. Assuming that
V[v] = ¥ = diag(o?,...,02), we get

s Up

n o0 o0

Cov(zs, xj) = ‘71'21 {i=Jjt+ 0.72 Z [Ah]ij + 01‘2 Z [Ah]ji + Zag Z [Ahi]io [Ahj]jo .
h=1 =1

h=1 o=1  h;=1h,
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@, with V[a,] = ¢7'E. Concretely, for the NVAR(p, ¢) from Eq. (5) and for a = Y1, oy,
Proposition 3 shows that ,/qu; KN N (0, V[(I — aA)"'4,]) as ¢ — oo, provided the high-
frequency innovations u, are strictly stationary.

Proposition 3 (NVAR(p, ¢): Limit Distribution of “Observable Innovations”).

Let y; evolve as in Eq. (5) for some q € N\{1}. Assume y; is weakly stationary and
u, ~ WN(0,%) is temporally independent. Define u; = vy, — Ely|F_1], where F_1 =

{Ur—qs Ur—q-1, ... }. Also, let a =>"7_ ay. Then, as ¢ — o0,

Jau S NO,T,SI), T,=(I—ad)".

Relation to Dynamic Factor Model The NVAR is a restricted VAR in which inno-
vations transmit across series along constant, bilateral links (in one direction). Relative to
a VAR(p) with p > 1, the NVAR(p, 1) induces parsimony; e.g. for each y;;, the n links
{aij}j=1:;m in A;. summarize the information in the np-dimensional set {y;:—i}j=1:ni=1:p:

Vi = Tha +uy  and oy = X 4wy, (9)

where z; = > "

j—1@ijYje—1 is the ith row of X; = [Ay;_1, ..., Ay;]. If, in addition, the network
A is sparse — as is the case across a wide range of applications —, then the NVAR rationalizes
the dynamic comovement among all {y;; }i=1., by the dynamic innovation transmission along

few bilateral links among i = 1 : n.

The Dynamic Factor Model (DFM) also reduces dimensionality by summarizing a large
set of predictors by a few linear combinations. Proposition 4 shows that the NVAR(p, 1) can
be written as a DFM, while a DFM with restricted factor dynamics can be written as an
NVAR(p, 1) in the limit as n — 00.22 Together with Eq. (9) above, it suggests that, at the
cost of restricting factor dynamics, the NVAR allows the linear combinations of predictors
to vary more flexibly across units, to the point that it naturally acommodates sparse factors
as (linear combinations of) locally important units in the network.?

Proposition 4 (NVAR(p, 1)-Factor Model Equivalence Result).
Let y; evolve as in Eq. (2). Let r be the rank of A. Then, we can write

yt:Aft‘f‘Ut, wlth ftGRT,

22The second part of Proposition 4 restricts f; € R” to follow an NVAR(p, 1). This is less restrictive than
it may seem; for p = 1, it requires f; ~ VAR(p), while under r = 1 it requires f; ~ AR(p). Also, note that,
as usual, the factor representation is not unique, and we can re-scale A and ¢ to ensure a;; € [—1,1].

2The DFM constructs {E;_1[y;s]}7; as different (A;.) linear combinations of the same factors f;, which
in turn are linear combinations of observables. In contrast, the NVAR constructs {E;_1[y;]}1, as the same
() linear combination of different covariates x;;, which in turn are linear combinations of observables.
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Conversely, let y, = Afy + &, with f, € R". Assume f; = @1 fi—1 + ... + p frp + 11, with
®;, = P for each Il =1:p and some ®. Then, as n — oo, we can write

Y= 01 Ay + o+ Ay U, u = A+ &

where A = AO(WA)YW and W is any r x n matriz with distinct rows.

3 Dynamics via Lagged Network Effects: Inference

The NVAR can be used to estimate dynamic (lagged) network effects, as determined by
«, the time profile of network effects. When the network A is estimated as well, it can
also be used as a dimensionality-reduction technique useful for forecasting (cross-sectional)
processes. In Section 3.1, I discuss inference on «, treating A as given. In Section 3.2, I
discuss joint inference on («, A).Details are in Section B.

3.1 Timing of Network Effects

NVAR(p,1) The NVAR(p,1) from Eq. (2) can be written as the linear regression in
Eq. (9). Defining ¥ = V[u,], we obtain the Least Squares (LS) estimator for a:

T “Lror
Q| = [ZX;E—IXt] [Z ng—lyt] . (10)
t=1

t=1

As usual, under u; ~ N(0,3), it is also the (conditional) Maximum Likelihood (ML) esti-
mator and the posterior-mean and -mode under a Uniform prior for «|¥. Under ¥ = I, it
yields the OLS estimator, which takes a “pooled” form:

t=1 i=1 t=1 i=1 t=1

Section B.1 establishes consistency and asymptotic Normality of &ors under large T, large
n and large (n,T") asymptotics. The derivations under large n assume that the observed net-
work adjacency matrix A,, converges to some limit A, so that, for example, % S, (An,i.yt_l)' iy S
E [(Aviye—t) wi]-

We can estimate 3 standardly by S|a = %23:1 wuy. The joint ML estimator (&, 2) is
obtained by iterating on &|¥ and X|« until convergence (see Meng and Rubin (1993)).

NVAR(p,q) In case of an NVAR(p, q), as defined in Eq. (4), an estimator for o can be

obtained by data augmentation.? However, point identification is not guaranteed. For

24The discussion holds likewise for the NVAR(p, ¢) from Eq. (5).
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example, under ¢ = 2 and p = 1, the observed process follows
Y = a2 A%y, Fuy,  with wy = Gy + o Aligy_1

which suggests that a; is identified only up to sign. The identification problem is akin to
estimating an AR(p) observed every ¢ periods, discussed in Palm and Nijman (1984).2° Tt
is due to the fact that the mapping between the parameters « in the high-frequency process
Y- and the parameters in the observed process y; is generally not bijective. For a general
AR(p) and ¢ = 2, the vector (ay, ag,...) is identified (jointly) up to sign (see Section B.1).

In the application in Section 4, the restrictions on « imposed by economic theory render
« point-identified, as suggested by a unique posterior mode under Uniform priors. In other
cases, one could follow the suggestion of Palm and Nijman (1984) and inform the estimation
of @ with a prior. This is facilitated by the clear interpretation of {cy};—;.; it is the GIRF
for units ¢ and j that only share a first-order connection (see Section 2.2) and indicates how
innovations transmit along a single link over time.

Conditioning on ¥, the posterior p(a|Y1.r) can be obtained using the Gibbs sampler of
Carter and Kohn (1994). Treating the unobserved data in Y.; as parameters, it iteratively
draws from p(f/l:TT\a, Yi.r) and p(a|}~/1:TT) to obtain a sample from p(a, }71:TT|Y1;T).26 Under
a Uniform prior for «, the resulting posterior mode of o converges to the ML estimator
obtained using the Expectation-Maximization (EM) algorithm. To estimate > as well, an
additional iteration step is added to the Gibbs sampler. Using a uniform prior, we get an

. . . . ) . T, ~ ~
Inverse-Wishart conditional posterior for X|Yy.z, , a with mode 7- .7, ..
P

3.2 Joint Inference: Network & Effect-Timing

When interest lies in dynamic network effects, joint estimation of («, A) is useful because
network data may be difficult to collect or it may appear restrictive to condition the analysis
on available network data. In addition, estimating («, A) jointly enables us to use the NVAR
as a dimensionality-reduction technique.

NVAR(p,1) The NVAR(p, 1) from Eq. (2) can also be written as the linear regression

vy =Az,+uy, or Y =ZA+U, (11)

251t is also similar to estimating continuous time models using discrete time data (see e.g. Phillips (1973)).

26The particular state space model where in some periods 7 no data is observed implies that in these
periods the updating-step of the Kalman filter is skipped and the updated distribution of states equals their
predicted distribution. See Section B.1, and see Schorfheide and Song (2015) for a discussion of the analogous
case of a mixed-frequency VAR.
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where z; = Zle Y = [yt_l,yt_g, ...,yt_p}oz, and the T" x n matrices Y, Z and U stack
yt, z¢ and u; along rows, respectively. To simplifty notation, I suppress the dependence of z;
on « and that of X; on A.

To render (a, A) jointly identified, I normalize «; = 1, with appropriate redefinitions
of a as well as y;, z; and X;. Relative to the alternative of restricting the norm of «,
this normalization facilitates analytical calculations and asymptotic analysis, but it requires
a1 # 0 in the true data generating process.?”

Suppose data on a network B with elements b;; is available. Under independent priors
aij ~ N (b, \; '), we obtain a matrix-variate Normal conditional posterior for A:

A (Y,0,%,B,A) ~ MN (A, 2,04) , Ua=[Z2Z+N%]", A=Us[Z'Y + \BY] .

Its mean and mode, A’, is the conditional optimizer for A under a LS objective function
with a Ridge-penalty:

T n
A = arg m}n Z (ye — Az)' S (e — Az) + A Z(aij —bi;)? . (12)

t=1 ij=1

As Ay — 0o, we impose A = B. As A\, — 0, we ignore B and infer A from the data alone. No
domain restrictions on A are imposed because any parameter value (o, A) can be rescaled
to yield a;; € [-1,1] V4,7, so that A can be interpreted as a network.?

Under a Laplace prior, the conditional posterior of A and its mode — the Lasso estimator
— is available analytically when imposing a;; > 0 and shrinking to b;; = 0. We get

Al (Y, 2, 0) ~ MN (A, 2,T,) , Ua=(22)", A=U4[2'Y —A/3)] ,

truncated to Rf. Drawing from this distribution or computing its mode is computationally
feasible only for a diagonal >, which renders the distribution of each row ¢ of A independent
across ¢. Under X = I, we get

A | (Y,a, S =1,)\) ~N((A);.,Us) , truncated to R’ .

A draw from this distribution is obtained using Gibbs sampling by iteratively drawing from
the Normal conditional densities a;; | (4;—;, Y., = I,\,) for j = 1 : n. Its mode is
computed by iterating on the latters’ modes.?

2"In case a;; > 0 is restricted, it requires oy > 0.

Z8To enforce a;; € [0,1] even under low A4, a;; > 0 must be imposed. This leads to the high-dimensional
Normal posterior being truncated to Rff and considerably complicates the analysis, as both computing the
mode and drawing from this distribution is computationally intensive.

29Taken together, these two results mean that we can draw from the distribution of A | (Y, a, ¥, \,) or
compute its mode by iterating on each column of A given all other columns.
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Given X and A, the joint posterior p(a, A|Y) is obtained by Gibbs sampling, iteratively
drawing from the conditional posteriors p(A|Y, a, B, 3, \,) and p(alY, A, Y). To estimate ¥
as well, an additional step is added to draw from p(X|a, A,Y). Under uniform priors for
a and X, the posterior mode of p(«, A, ¥X|Y) is equal to the GLS estimator (&, A, f]) of the
objective function in Eq. (12), obtained by iterating until convergence on the three respective
conditional estimators. Fixing ¥ = I, we obtain the OLS estimator of («, A), for which
consistency and asymptotic Normality under T — oo are established in Section B.2. The
choice of A\, for predictive purposes as well as the possibility to construct B as a combination
of multiple link-types is discussed in Section 5.

NVAR(p,q) As in the estimation of «|A, if the network interaction frequency is higher
than the observation frequency, joint inference on («, A) can be conducted by relying on data
augmentation. As before, identification is not guaranteed. In fact, relative to the estimation
of a|A the problem is likely worsened, even if A may be tightly shrunk to a known (or
sparsely parameterized) network B. However, the estimation of («, A) in the application in
Section 5 of this paper is judged based on forecasting performance, not its ability to deliver
point identification.

4 Business Cycles by Lagged Input-Output Conversion

Long and Plosser (1983) show that time lags between the production of goods and their sub-
sequent use as intermediaries for producing other goods can generate endogenous business
cycles. In this application, I empirically quantify the importance of their proposed channel.
I generalize their RBC economy with one-period lagged IOC by assuming that firms’ pro-
duction requires inputs produced in the past p periods. This leads to sectoral output growth
evolving at some model-frequency as an NVAR(p, 1), which translates into an NVAR(p, q)
for some ¢ € N at my monthly frequency of observation. Thereby, A is the input-output
matrix, u; contains sectoral productivity processes, while {a; };—1,, show how input-sourcing
is spread out over the p periods. By estimating «, ¢ and the persistence in u;, I use the
NVAR to quantify the extent to which business cycles in this framework are due to lagged
IOC as opposed to persistence in exogenous productivity processes.

After theoretically motivating the analysis in Section 4.1, I discuss the setup, data and
estimation in Section 4.2. Section 4.3 presents the results. Details are in Section C.

4.1 Theory

The following analysis is based on Carvalho and Tahbaz-Salehi (2019) — who discuss a static
economy — and the Appendix to Acemoglu et al. (2016). Derivations are in Section C.1.
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Assume there are n sectors, in each of which a representative firm produces a differenti-
ated good i by combining labor services l;; and goods produced by other sectors j, {zi;-}}_;,
using a constant returns to scale (CRS) Cobb-Douglas production function. Firms maximize
profits, taking prices as given. The profits of firm ¢ in period 7 are

n n
— 17 . o b: aij
Wir = pirYir — wrlir — E pirxd . with v = 210 | | x

J=1 j=1

where b; > 0, a;; > 0 and b; + Z?Zl a;; = 1. z;; denotes Total Factor Productivity (TFP)
in sector ¢, {p;; }I-, are the prices of the n different goods, and w; is the price of labor. x;;-
is the amount of good j used in the production at time 7. As discussed below, it can differ
from the amount of good j purchased in period 7, x%.

In this environment, prices are entirely determined by supply. To characterize output, I
assume the presence of a representative household who supplies one unit of labor inelastically
and exhibits log-preferences over the n goods:

max zn:%’ In(cir /i), st Zn:pircif = w;r,
i=1

{CiT}?:l i=1

where > 4 = 1. The first-order condition (FOC) yields ¢;; = %Z%.ao This result holds
even if households have access to a storage technology, as market clearing under represen-
tative households in a closed economy implies that households spend their whole period 7
income, w,, on consumption.

Different assumptions on the timing of IOC lead to different dynamics of sectoral prices
and output in this economy. Typically, it is assumed that inputs are converted into outputs
in the same period when they are purchased, i.e. x;;; = . Dropping time subscripts in this
static environment, define § = In(y), y = (y1, ..., yn) and analogously for Z. In equilibrium,
sectoral output satisfies

J=k + Aj+ 7, (13)

where kY is a vector of constants, and a;; = p;a* /(p;y;) is value of good j purchases by sector
1 as a fraction of the value of sector i’s output. In this environment, while the network A
amplifies idiosyncratic TFP shocks and therefore affects the variance of 7, any autocorrelation
in g is inherited from that in Z (see e.g. Carvalho (2010); Acemoglu et al. (2012)).

To analyze dynamics under lagged I0C, I assume perfect foresight.®! If, as in Long and
Plosser (1983), it takes one period to convert purchased inputs into output, then z;;, = z2_,

30Hence, ; is the share of good 4 in households’ expenditures.
31 As discussed in Fan et al. (2023), this assumption is standard for modeling dynamic spatial economies,
which are closely related to dynamic network economies.
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and sectoral output approximately follows an NVAR(1,1):
Ur = kq?{l + Ag’r—l + 27,

where the time variation in k%' is due to time variation in the numéraire w,. So long as
B < 1, in steady state, prices are higher and output is lower than in the economy with
contemporaneous I0C. Also, the meaning of a;; = 87 'p;a¥ /(p;y;) changes slightly. These
differences vanish as  — 1. More importantly, while the former, static economy is always
in steady state, the economy with one period-lagged IOC features transition dynamics; af-
ter a disturbance to Z,, . only asymptotically converges to steady state.?? It is due to
these transition dynamics that this framework can generate endogenous business cycles, i.e.
autocorrelation in ¢, even in absence of autocorrelation in Z;.

To take the economy with lagged 10C to the data, I generalize the lag length by as-
suming that firms require inputs produced in the past p periods for production. For ease of
exposition, let p = 2. Let z,;, aggregate quantities of input j purchased at different periods
in the past using a Constant Elasticity of Substitution-aggregator:

.. .. 1/7.
_ ) r ) s _
Lijr = [Oél('r‘r,ffl) + 042(1’7_’7_72) } , o, 2 0 , 1 Qg = 1 )

where xi{T_h denotes the use of good j purchased at time 7 — A in the production of good
i at time 7.3% This shortcut stands for frictions like delivery costs and -lags and storage
capacity constraints (Khan and Thomas, 2007; Alessandria et al., 2010; Liu and Tsyvinski,
2024; Antras and Tubdenov, 2025).3% In the Cobb-Douglas case r — 0, sectoral output
approximately follows an NVAR(2,1):

Jr = k2 + 01 Afr 1 + 02 AGr 2 + (14)

where once again kY2 varies over time only to the extent that the numéraire w, changes
in value. Under a more general elasticity of substitution r € [0,1),® the analogous result
is obtained by log-linearizing around the steady state (see Section C.1). This specification
nests the one period-lagged economy, which is obtained under a, = 0. Relative to that case,
s > 0 increases prices and decreases output in steady state, provided that g < 1. Also, we
have a;; = [fa; + B2ay) " (p;z)/(piyi). As B — 1, the links a;; retain their interpretation as
the output shares of different inputs j in the production of good i. The parameters (o, a)
show the shares of an input j purchased at different periods in the past in the overall usage

32Relatedly, as discussed in Section 2.2, the response of Y(r) to a change in Z(; in the static economy cor-
responds to the long-term response of ¢, to a permanent change in 2, in this dynamic economy (disregarding
the slightly changed meaning of a;;).

33This means that a good perishes after two periods (with regard to its suitability as an input in produc-
tion). Therefore, the amount of good j purchased at time 7 can be used in production at periods 74 1 and
T+ 2: xl‘e’j = w:-]—i-ln' + x:'J-&-Q,T‘

34 As in the Long and Plosser (1983)-economy above, the presumption is that storage is done by the buyer.

35This notably excludes complementarity (r < 0) and perfect substitutability (r = 1).
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of input 7 in the production of good i. Their homogeneity means that the time profile of
input-sourcing is assumed to be constant over time and across input-output pairs (7, j). The
restrictions aq,as > 0, a3 +as = 1 and 2?21 a;; < 1V 1 imply that g, is stationary as long
as 2, is.36

The theory above does not restrict the process of (log) sectoral TFP Z;.. In general, it
may display secular growth and persistent shocks of both aggregate and idioyncratic nature.
Consider a difference-stationary specification with aggregate and idiosyncratic TFP processes
e? and e; evolving as AR(1) processes as in Foerster et al. (2011):

AZir = v + 0l + €ir

(1 — p,L)e® = e* ~ WN and (1 — p;L)e;; = €;; ~ WN. Under contemporaneous 10C

T

(Eq. (13)), this leads to
A= (1= Ay +6e +e,] (15)

We obtain IRFs 0AY; r4/0¢;, and OAY; ;45/0e akin to those in Eq. (7) in Section 2.3.
This points to two sources of persistence in output growth: persistence in the aggregate
TFP process e? and persistence in idiosyncratic TFP processes {e;;}" ;. The role of input-
output links is limited to amplification; the response of output growth in sector i to a TFP
shock in sector j is scaled by element (i, j) of the Leontief-inverse (I — A)~!, as in Carvalho
(2010, Fig. 7 and 8). By summing up connections of all order from i to j, the latter shows
the importance of sector j in sector ¢’s supply chain.

Lagged IOC can be an additional source of persistence. Under Eq. (14), we get
Ag’r ~ Y + OélAAgT—l + aQAAgT—Q + 56? + er, (16)

which leads to IRFs OAY; r41/0¢; » and OAY; r4p/0e? akin to those in Eq. (8) in Section 2.3.
As discussed in Section 2.3, lagged IOC and TFP shocks’ autocorrelation imply distinct
dynamics; « relates the timing at which a sector’s output is first impacted by a TFP shock
in another sector and the strength of the ensuing response to network connections of different
order, whereas p, and {p;},;=1., induce an exponentially decaying response after every round
of networked transmission.

Under a difference-stationary specification for log sectoral TFP z,., TFP shocks have
temporary effects on output growth, but persistent effects on output levels. By Corollary 4,
the long-term response of (log) output to a TFP shock — equal to the cumulative response of
output growth — is the same under contemporaneous and lagged IOC, in line with the fact

36Berman and Plemmons (1994, ch. 2) show that for an element-wise nonnegative matrix with row sums
strictly smaller than 1, the absolute value of the largest eigenvalue is strictly less than 1. Stationarity then
follows by Corollary 1.
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that any TFP level yields the same steady state in both economies (disregarding differences
in A between the two).

To take the processes in Eq. (15) and Eq. (16) to the data, one has to take a stance on
what a period in the theoretical models above signifies. Let {Ay;}._, be observed output
growth. As it is a flow variable, the model-frequency must be either equal to the observational
frequency or an integer-multiple thereof (see Section 2.2.3):

Ayrsg =AY+ . + Afrg for 7/¢=1,...T, (17)

and for ¢ € N. Other things equal, under a higher ¢ the economy approaches faster the new
steady state level of output following a TFP shock. Relatedly, under lagged 10C, it also
means that the IRFs at any single horizon increasingly depend on higher-order connections,
and it leads to network-induced cross-sectional correlation in innovations at observational
frequency, whereas for ¢ = 1 the correlation is entirely due to aggregate TFP shocks.3” As the
meaning of ¢ depends on the frequency of observation, its choice is discussed in Section 4.2.

4.2 Application-Setup, Data & Estimation

[ quantify the relative contributions of these two (three) drivers of aggregate persistence as
seen through the lens of the theory of real business cycles with contemporaneous and lagged
IOC. To do so, I estimate the state space models characterized by Egs. (15) and (17) and
Egs. (16) and (17), respectively, based on industrial production growth across US manu-
facturing sectors, while calibrating the links a;; using input-output data. The analysis first
seeks to determine whether there is a role for lagged IOC at all by comparing the data fit of
specifications with lagged IOC to that with contemporaneous IOC based on model selection
criteria. Presuming that one of the former is preferred, the role of lagged IOC can be quan-
tified by computing the change in the autocorrelation implied by the estimated model with
lagged IOC when the persistence in TFP shocks is set to zero.

I compute log differences of monthly industrial production (IP) indices across 23 manu-
facturing and mining sectors in the US economy provided by the Federal Reserve Board.The
indices are available from January 2005 through August 2022. To eliminate seasonal pat-
terns, I regress each series on month-dummies, take the residuals and add back the mean.
To construct A, I use annual data on input-output (IO) matrices provided by the Bureau of
Economic Analysis (BEA). I take the input-output matrix for 2010. Following the theory in
Section 4.1, links a;; are calibrated as
salesj_y;

Q;5 =
J sales;

37See Section C.1 as well as Section 2.2.3 for more detailed discussions of these points. In the limit as
q — o0, the long-term response referenced in Proposition 6 — a function of all connection-orders — materializes
after a single observational period.
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where sales;_,; is the total value of goods and services purchased by sector 7 from sector j
as determined by the corresponding entry in the BEA’s “use” table.*® The value of a;; shows
how many dollars worth of output of sector j sector i needs to purchase in order to produce
one dollar’s worth of its own output. I abstract from the differences in the calibration of
a;; between contemporaneous and lagged IOC, which renders the analysis valid as 8 — 1.
More importantly, the calibration assumes that firms’ input shares reported for the course
of a year are equal to those at higher frequency intervals. Details on the matching of IP and
IO data is provided in Section C.2.

For the specification with lagged IOC, I consider p = {1,2,3,4,5,6} and ¢ € {1, 2,3}, im-
plying network interaction frequencies of a month, two weeks and 10 days. Under contempo-
raneous [OC, I take ¢ = 1, as it already refers to the limit case of an infinitely high frequency
of network interactions. In both cases, I consider Normal AR(1) processes for idiosyncratic
and aggregate TFP: (1 — p,L)e? = &2 ~ N(0,02) and (1 — p;L)e;; = &5, ~ N(0,07). To
separately identify both TFP processes, I normalize 02 = 1 and §; = 1, re-defining 6. To
accommodate the restrictions oy >0 V1 and Y 7, oy =1, I drop o, from a and impose the
domain restrictions a; € [0,1] for [ = 1:p—1 and 37—y < 1. Under lagged I0C, this
yields p—1+4n unknown parameters: 8 = (a/,~', &, pa, o', %), where p and o2 stack {p; }7,
and {c?}"_,, respectively. Under contemporaneous IOC, « is dropped from 6, leading to 4n

parameters.®”

The inference from Section 3 is not applicable because of the autocorrelation and factor
structure of TFP processes and due to the restrictions on e under lagged IOC. The likelihood
of both models can be evaluated with a Kalman filter, as stated in Section C.3. I consider
Bayesian inference on 6 under uniform priors on the respective domains.*® As a result,
the posterior mode equals the Maximum Likelihood estimator. The posterior is obtained
numerically using a Sequential Monte Carlo algorithm, which — as a by-product — estimates
the marginal likelihood and therefore enables model selection.

4.3 Results

Table 1 reports the Marginal Data Density (MDD) for different specifications of the model
with lagged IOC. For comparison, its value under contemporaneous I0C is -11,590. This
number is beaten by all but a few lagged IOC specifications with ¢ = 1. The most preferred
specification features ¢ = 2 and p = 5, i.e. bi-weekly network interactions where innovations
travel 2.5 months along single input-output links. The subsequent analysis is based on this
preferred specification.

38This is in line with the literature. See Acemoglu et al. (2016) for example. Carvalho and Tahbaz-Salehi
(2019) discuss the IO data in more detail.

39With n = 116 sectors and T = 211 — p periods available for estimation, this yields an observations-to-
parameters ratio of 52.5 under p = 1 and 50.7 under p = 6.

108pecifically, p;, po € [0,1) and 02,02 € Ry fori=1:n,6 € R" and a € [0,1]P" ' N{a: ||al; < 1}.

(R a
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Table 1: Model Selection: Log MDD

p
1 2 3 4 5 6

12058 -11975  -11680  -11466  -11450  -11729

q 2 -11223  -11509  -11317  -11180  -11109  -11353

-11257 -11174 -11406 -11185 -11204 -11219

Notes: The table shows the log Marginal Data Density (MDD) across model specifications. The
values for ¢ (from top to bottom) refer to network interaction frequencies of a month, two weeks
and 10 days, respectively. The log MDD under contemporaneous 10C is -11590.

Fig. 3 illustrates the composition of impulse responses, analogously as Fig. 2 does for
two units that share only a first- or second-order connection. The top-left panel shows the
estimated temporal propagation of TFP shocks along supply chain linkages of different order.
Remarkably, within the first two months after the shock, the impact is mostly limited to
direct customer-sectors. After that, the shock spreads somewhat more quickly to higher-
order connections.

The top-right panel shows the strength of network connections of different order from
the sector “Fabricated Metal Products” to the sectors “Mining (except oil and gas)” and
“Chemical Products”, respectively. Firms producing fabricated metals depend on chemical
products directly as well as indirectly in their supply chain. In contrast, they rely on mining
products only indirectly, though this higher-order dependence is of a similar magnitude.

The lower panels of Fig. 3 illustrate the resulting impulse responses to a respective one
standard deviation idiosyncratic TFP shock to Chemical Products and Mining. As a result
of its stronger direct reliance on chemicals, the response of the growth in the production of
fabricated metals to a TFP shock in the chemical sector materializes much faster than does
the response to a TFP shock in mining. Yet, the two are of a similar magnitue at their
peaks.

The responses refer to percentage point increases in sectoral output growth. To interpret
the magnitudes, recall that the data is in monthly frequency and that the (persistent) re-
sponse of the level of sectoral output is obtained by summing up the illustrated (transitory)
response of output growth. Expectedly, the magnitudes are rather small, as they refer to
responses of sectoral output to idioyncratic TFP shocks in a single other sector.

Larger responses are obtained when considering aggregate TFP shocks. On top of their
direct effect on the output growth of all sectors, the latter have an indirect effect, as the
supply chain network amplifies initial effects. Fig. 4 shows the respones of output growth in
the sectors “Oil and Gas Extraction” and “Machinery” to a one standard deviation shock to
aggregate TFP. The oil and gas extraction sector is positioned rather at the top of supply
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Figure 3: Impulse Responses to Idiosyncratic TFP Shocks
Notes: The top left panel depicts the coefficients CZ(h) : cﬁ from Eq. (8) for h =1 : 6, illustrating how a single shock transmits

along network connection-orders (y-axis) over time (x-axis; horizons). The dashed lines show the bounds on which connection-
orders can matter in an NVAR(2,1): h € k(h) : h. The top right panel shows the supply chain connections of different order
from “Fabricated Metal Products” to “Mining (except oil and gas)” and “Chemical Products”, and the bottom panels show
the resulting IRF's to a TFP shock of one standard deviation.

chains. Due to its weak reliance on other sectors as suppliers, its response to aggregate TFP
shocks is only weakly amplified by supply chain connections. In contrast, after a similar
initial response, the machinery sector experiences a hump-shaped response due to second-
order transmission operating via its supplier-sectors. The relevant network-quantity for these
IRF's is a sector’s weighted reliance on all other sectors as suppliers, with weights given by
their exposures to the aggregate TFP shock, 0 (see Eq. (16)).

A similar reasoning explains the differing IRFs of aggregate output growth to sectoral
TFP shocks. Fig. 5 shows these responses to TFP shocks in “Mining (except oil and gas)”
and “Chemical Products”, respectively. As the chemical sector sits on the top of supply
chains, it leads to a much more persistent increase in aggregate industrial production than
does an increase in the TFP in the mining industry. The relevant network-quantity for these
IRFs is all sectors’ weighted reliance on the particular sector in question as a supplier, with
weights given by sectors’ contribution to aggregate output growth.
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Figure 4: Impulse Responses to Aggregate TFP Shocks

Notes: The left panel shows the impulse-response of the production growth in “Oil and Gas Extraction” to a one standard
deviation aggregate TFP shock. The right panel does the same for the sector “Machinery”.

Existing studies use a static framework of contemporaneous input-output conversion to
show that the effects of sectoral TFP shocks on aggregate output are stronger for sectors with
more central positions in the supply chain network. By Proposition 6, the present analysis
leads to the same long-run effects, but it sheds light on the transition dynamics. The left
panel of Fig. 6 shows the time profiles of the response of aggregate industrial production to
TFP shocks in different sectors. It illustrates that, due to different positions in the supply
chain network, under lagged IOC sectors differ not only in terms of the strength of their
impact on aggregate output, but also by its timing. Sectors at the bottom of supply chains,
such as the food and beverage sector, have a much more immediate effect on aggregate
output than sectors that act as important suppliers to other sectors in the economy.

Although stronger effects tend to take more time to realize, there is no clear relationship
between the strength and timing of the response of aggregate output to sectoral TFP shocks.
This is illustrated by the right panel of Fig. 6. For example, a TFP shock in the food and
beverage sector has a similar long-term effect on aggregate output as a shock to primary
metals, yet the latter materializes much more sluggishly. One month after the TFP shock
in the primary metals sector, a similar fraction of the long-term effect on aggregate output
has materialized as in the case of a TFP shock to mining support activities, yet the latter
are estimated to lead to a stronger long-term effect.

The autocorrelation of aggregate output growth at the posterior mean is estimated to be
0.389. In a hypothetical environment without persistence in exogenous shocks, this number
drops to 0.237. As a result, lagged IOC can account for about two thirds of aggregate per-
sistence. Together with persistence in the aggregate TFP process, this number increases to
0.365. In contrast, if only persistence in sectoral TF'P processes is added, the autocorrelation
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Figure 5: Impulse Responses of Aggregate Output Growth

Notes: The left panel shows the impulse-response of the aggregate growth in industrial production to a one standard deviation
shock to the TFP in “Mining (except oil and gas)”. The right panel does the same for the response to a TFP shock in “Chemical
Products”.

increases only to 0.276. Overall, these results indicate that lagged IOC and a single, persis-
tent aggregate TFP process can account wel for business cycles in this RBC environment.

5 Dimensionality-Reduction by Innovation Transmis-
sion through Parsimonious Networks

In Section 4, a process y; is driven by an observed network, and we quantify how net-
work effects materialize over time. In this section, I forecast a rather high-dimensional
series y; and, for the most part, I assume that no network data is available. When («, A)
are jointly estimated and the estimation of A is regularized, the NVAR becomes useful as
a dimensionality-reduction technique. It rationalizes the dynamic comovement among all
{Yit}i=1.n by the dynamic innovation transmission along a few bilateral links among units
1=1:n.

In Section 5.1, I discuss the potential of the NVAR to reduce dimensionality, building on
Section 3.2. Section 5.2 then sets up the application to forecast macroeconomic aggregates
across countries, and Section 5.3 presents the results. Details are in Section D.

5.1 NVAR-Estimation for Dimensionality-Reduction

Even for intermediate n, an unrestricted VAR(p) poorly forecasts y; € R™. Relative to it, un-
der p > 1, the NVAR(p, 1) reduces the number of parameters in the autoregressive matrices
from pn? to n? + p — 1, owing to the assumption that innovations transmit cross-sectionally
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Figure 6: Size and Timing of IRF's of Aggregate Output Growth

Notes: The left panel shows the time profile of the effect of sectoral TFP shocks on aggregate industrial production for a few
selected sectors. The right panel relates the strength of the effects to their timing. The shock sizes are equal to one standard
deviation of the respective sectoral TFP shock.

only via bilateral links; rather than freely relating y;; to {y;+—1}j=1:n1=1., it uses the n links
{ai;}iz1.n to compress this information to x;;—; = Z?:l a;jy;i—1, and in turn the p — 1 free
parameters in o determine the importance of different lags of z;; for the dynamics of y;,.4!
If, in addition, A is estimated parsimoniously, then the NVAR leverages both approaches
available to address the large parameter problem in the Wold representation (Geweke, 1984):
it reduces the number of parameters and applies shrinkage priors (regularization). Regular-
ization of A is motivated by the sparseness of real world-networks across a wide range of
applications and by the fact that the dynamic comovement of two series y;; and y;; can be
captured with higher-order connections between ¢ and j without a direct link between them
(see Propositions 1 and 2).

Section 3.2 discussed the estimation of A under a Normal prior (L2-penalty) and under
an Exponential prior (Ll-penalty and restricting a;; > 0). In the following, these two
approaches are labeled NVAR-R and NVAR-L. The joint posterior of («, A) is obtained by
iteratively drawing from the conditional posteriors of o|A and A|a, the joint posterior mode
— the Ridge-/Lasso-regularized LS-/ML-estimator — by iterating on the conditional posterior
modes.

When the NVAR-R and NVAR-L are applied for predictive purposes, selecting the hy-
perparameter A\, — i.e. the degree of shrinkage — becomes particularly important. Following
Giannone et al. (2015), setting a hyperparameter to its marginal posterior mode (MPM)
under a Uniform hyperprior maximizes the marginal data density (MDD) and, hence, the
one-step ahead predictive ability. Under NVAR-R and NVAR-L, respectively, we obtain the

“1'Even though E;_1 [y;;] contains the same linear combinations of {yjt—1}j=1m at alllags I = 1 : p, dynamics
at higher horizons h are driven by different linear combinations, since higher-order network connections
accumulate over time (see Proposition 1).
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conditional posteriors

n?+2 tr[(A— B)(A- B)]
2 7 2

AaI(A,B>~G( ) and A\, | A~G(n®+1, /A .
We get the joint posterior of (a, A, A\,) by augmenting the Gibbs sampler from Section 3.2
with a step to draw A, from this conditional posterior. In turn, we arrive at the marginal
posterior of A\, by simply considering its posterior draws in isolation.

While well-grounded in theory, the approach of Giannone et al. (2015) is computationally
expensive in the present environment, as it requires obtaining the full posterior.#?> For NVAR-
L, a heuristic approach is to maximize the Bayesian Information Criterion (BIC) suggested
by Zou et al. (2007) for other Lasso-applications. This involves counting the number of
non-zero elements in A(),). For NVAR-R, an analogous criterion is the conditional MDD
p(Y| A, B, a, 2), which is derived in Section D.1 and can be maximized when evaluated at
& (and 3).

5.2 Forecasting-Setup

To validate the NVAR’s merit as a dimensionality-reduction technique, I forecast a range
of macroeconomic time series across countries and compare its performance to that of the
Dynamic Factor Model (DFM) of Geweke and Zhou (1996):

w=A+uw, fi=Cfia+. +Ofiptn, (18)

where u; ~ N(0,1,), m+ ~ N(0,I,) and Ay, is lower-triangular with positive diagonal
elements. The equivalence result in Proposition 4 suggests that, relative to the DFM, the
NVAR restricts factor dynamics, but allows the linear combinations of predictors to vary
more flexibly across units and acommodates sparse factors as (linear combinations of) locally
important units in the network. Therefore, the NVAR is expected to capture cross-sectional
dynamics in finite samples better than the factor model in the presence of many sparse
factors or, equivalently, in case of a sparse, yet close-to-full-rank network adjacency matrix.
Intuitively, this is the case of dynamics driven by many bilateral links rather than a few
influential units. More generally, Proposition 4 suggests the NVAR could improve upon the
poor forecasting performance of factor models under a high dispersion of factor loadings
across series (see Boivin and Ng (2006)).%3

42This is particularly disadvantageous if only the posterior mode estimator is of interest. Even if the full
posterior of (a, A) evaluated at the optimal )\, is desired, however, it is a drawback, as it requires conducting
posterior sampling twice. The disadvantage disappears only if one is interested in the marginal posterior of
(o, A) under a Uniform prior for A\, (model-averaging rather than -selection).

43This notably includes the case of sparse factors, i.e. loading-vectors with zero and non-zero entries. As
Boivin and Ng (2006) point out, selecting the number of factors separately for each series is a poor remedy:
series that depend on less dominant factors are still poorly forecasted, as including more estimated factors
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To investigate these hypotheses, I use the NVAR and DFM to forecast monthly industrial
production (IP) growth, monthly CPI inflation and quarterly real GDP growth across OECD-
member countries, -applicants and -partners.** The series are obtained from the IMF’s
IFS database, and YoY growth rates are used. I limit attention to the pre-COVID periods
2001:M1 - 2019:M12 and 2001:Q1 - 2019:Q4, respectively, and I delete countries with missings
or more than two consecutive constants. This yields datasets withn =42, n = 34 and n = 39
observations. The series are de-seasonalized by subtracting fitted values from a regression
on period-dummies, and the resulting series are standardized.

Comparison is based on mean squared errors (MSEs) at different forecasting horizons,
whereby the mean is taken over countries as well as forecasting origins. I consider expanding
windows with 24 and 16 origins, respectively, ranging from 2017:M12 to 2019:M11 and from
2015:Q4 to 2019:Q3. To reduce the computational burden, the models are fully estimated
only at the first origin, after which parameters are fixed and, if required, hidden states are
re-estimated by conditioning on these initially estimated parameters. At the first origin, we
have T' = 203 and 7" = 60 observations, respectively.

I limit the analysis to point forecasts obtained under the posterior mode of («, A) in the
NVAR-R and NVAR-L as presented in Section 3.2 — the Ridge-/Lasso-regularized ML-/LS-
estimator —, and the posterior mode of (A, @), & = [®y, ..., $,|" under a Uniform prior in the
DFM — the ML-/LS-estimator (see Section D.3). For the DFM, I consider p = 1 : 4 lags and
r = 10 factors. In turn, I select the ex-post best-performing specification that minimizes
the cumulative MSE over the first three horizons, and I compare all NVAR specifications
against this benchmark. This renders the assessment of the NVAR’s suitability for forecasting
independent of methods to select the number of factors ex-ante. For the NVAR, I also
consider p =1 : 4 lags, and I mostly focus on ¢ = 1 — the case referred to by Proposition 4 .
In both NVAR models, I set ¥ = I, and, unless otherwise stated, I shrink A to B = 0. The
degree of shrinkage, as embodied by \,, is chosen based on two methods. The first takes
the MPM and, therefore, maximizes the MDD exactly, while the second approximates this
choice by using grid-search to maximize the BIC (in case of the NVAR-L) or the conditional
MDD (for the NVAR-R).

5.3 Results

Fig. 7 illustrates the results for IP growth and NVARs with ¢ = 1. The ex-post best
DFM features » = 4 factors and p = 1 lags. As shown by the black line, it reduces the
MSE of one-step ahead forecasts by 13% relative to forecasting the unconditonal mean of
zero. As expected, this improvement vanishes for higher horizons. The NVAR-R (blue

adds noise to the forecasts.

44As of August 2024, this includes 45 countries. On top of 34 OECD members, there are 8 applicants
(Argentina, Brazil, Bulgaria, Croatia, Indonesia, Peru, Romania and Thailand) and 3 partners (China, India,
South Africa).
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Figure 7: Forecasting: NVAR(p, 1) vs. Factor Model, Industrial Production Growth

Notes: The plot depicts the out-of-sample MSEs generated by the ex-post best-performing DFM, NVAR-R and NVAR-L, all
relative to those generated by an unconditional mean forecast. All forecasts refer to those obtained under the posterior mode.

lines) further reduces the MSE at the first horizon, amounting to -27% relative to the same
benchmark (-16% relative to the DFM), whereby the noticeable improvement relative to the
DFM persists for the first two horizons. Thereby, both methods to select A\, yield similar
answers — A\, prpar = 160 (solid line) and A\, prpp = 141 (dashed line) — and indistinguishable
forecasting performances. They both lead to p = 2 as the ex-post best-performing model.
For NVAR-L (red lines), smaller values and differing lag-lengths are selected: A\, arpar = 31
with p = 1 (solid line) and A\, prc = 8 with p = 3 (dashed line). Nevertheless, the forecasting
performances are again similar. For the first horizon, they yield MSE reductions of -42%
and -40% relative to the unconditional mean (-33% and -30% relative to the DFM). The
improvement is long-lasting, reverting to levels obtained under the DFM and NVAR-R only
for six-period ahead forecasts.*?

The results in Fig. 7 are obtained using the respective posterior mode, i.e. frequentist
point estimator. As shown in Fig. A-1, the factor models yield similar performances even
for forecasts at the posterior mean or the posterior mean forecasts. Selecting the best DFM
using these alternative forecasting-types does not change any of the above numbers by more
than two percentage points. For NVAR-L, the normalization a; = 1 is applied, whereas for
NVAR-R, ||a|[; = 1 is imposed.*® The computational time needed to obtain the posterior
modes of the DFM and the NVAR for a given A, are of a similar order of magnitude and

45The models’ performances under different different choices of p and r are shown in Fig. A-1 and Fig. A-2.
46Under the former normalization, NVAR-R yields poor performance, as the free parameters in a are
increased to extremely high values, while all elements in A are shrunk accordingly. This is likely because,
for highly correlated series with E[y,y;_;] =~ Elyiy;_], a—1 is weakly identified, as e.g. Ay;—1 + o Ays_o ~
(1 + ag)Ay;—1. This issue does not occur for NVAR-L, likely because it shrinks numerous elements of A all
the way to zero. The issue does not occur either when estimating the full posterior of NVAR-R or NVAR-L.
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Figure 8: Forecasting: NVAR(p, 1) vs. Factor Model, CPI Inflation & Real GDP Growth

Notes: The plot depicts the out-of-sample MSEs generated by the ex-post best-performing DFM, NVAR-R and NVAR-L, all
relative to those generated by an unconditional mean forecast. All forecasts refer to those obtained under the posterior mode.

amount to 5-10 seconds. However, this burden is considerably increased by the need to re-
compute the posterior mode for many different A, in the search for the value that maximizes
MDD or BIC and the need to compute the full posterior distribution in the search for the
MPM of \,.47

Qualitatively, the same conclusions apply when forecasting monthly CPI inflation. The
left panel of Fig. 8 shows that, in this case, the DFM reduces the one-step ahead MSE by
54% relative to the unconditional mean forecast, with a noticeable improvement persisting
throughout the first six months. The NVAR-R improves slightly upon this, yielding -67%
and -64% (-27% and -22% relative to the DFM). The NVAR-L delivers again the best
performance: -86% and -85% (-68% relative to DEM).

When forecasting quarterly GDP growth, the conclusions change. The performance of
the best DFM (-30%) is beaten only slightly and only at the first horizon. The NVAR-
R models yield -37% and -35% (-10% and -7% relative to DFM), and the NVAR-L with
Ae-selection according to BIC yields -38% (-12% relative to DFM). At longer horizons, the
NVAR-R yields a similar performance as the DFM, beating the unconditional mean by about
10-15%, while the reduction by the mentioned NVAR-L model reverts faster to zero. The
NVAR-L with A, selected by MPM yields -22% and thereby underperforms the DFM by
12%.

4TFor NVAR-R, this yields about 50-100s in the former case and about 10min in the latter case. These
times are doubled for NVAR-L.
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6 Conclusion

In this paper, I develop the Network-VAR (NVAR) — an econometric framework that ratio-
nalizes the dynamics of a cross-sectional variable by the dynamic innovation transmission
along bilateral links among cross-sectional units — and I consider two applications. First, I
estimate the contribution of lagged input-output conversion to business cycles through the
lens of an RBC economy, thereby providing a structural underpinning of the NVAR. Sec-
ond, I use the NVAR as a dimensionality-reduction technique for forecasting cross-country
macroeconomic aggregates.

More work is needed to explore the extent to which the NVAR is useful to address sparse
factor-issues and improve upon the forecasting performance of alternative dimensionality-
reduction techniques. Its application for forecasting very high-dimensional processes would
benefit from refinements of the crude shrinkage priors used in this paper.

Furthermore, rather than assuming time-invariant links, an important methodological
step forward would be to jointly study dynamic network effects and -formation. Rather than
assuming stationarity, an interesting avenue for further research would be to study networked
cointegration. Finally, the NVAR could be augmented to accommodate heterogeneous prop-
agation patterns across units or over time, which in the context of a production economy
amounts to endogenizing firms’ inventory management. I leave these directions for future
research.
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A NVAR: Theory

A.1 NVAR(p,1): Granger-Causality/GIRF's

Proposition 1 (NVAR(p, 1): Granger-Causality).
Let y; evolve as in Eq. (2). Then, for k = ceil(h/p) and some coefficients {c}p—g:n, we have

Witth _ nroak h T Ah

Proof: Write y; in companion form as z; = F'z;_y + ;, where 2, = (y;,y; 1, .-, ¥;_p1) and
er = (uy, 0/, ...,0") are np x 1 vectors, and the np x np matrix F is

o .. b, D,
L, ... 0, 0,
F=|_ :
0, .. I, 0,
We have 9
gz—h = [ITHOan(p—l)]Fh[-[?’HOnXTL(p—l)]/ - (Fh)ll )
t

where (F"),,, is the n x n matrix in position (I,m) of F". T prove the following claim by
induction: (F™);; has powers of A in the set ceil((h +1—1)/p) : h. Note that the claim is
true for h = 1. Suppose it is true for h. For h + 1 we have

_ o, ... b, D
(Fn o (F)y] | )
Fhtl : : " " '”
_(Fh)pl (Fh)PP On [n On

[(F")u®y + (F")1p (FM)1u®s+ (F'1 o (FM)u®por + (F7)y, (FM)1®,
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(Only the first row of blocks in F"! are relevant to the argument.) Consider m € 1: (p—1)
s.t h +m is a multiple of p. Then

(hH+l—1 htm forl=1:(m+1)
ceill | — | = p )

p thTm—l-l forl=(m+2):p

This means that for [ = 1 : (m + 1), (F");; has powers of A in (’H'Tm) : h, while for
[l = (m+2) : p it has powers in <h+Tm + 1) : h. Then, by the equation above, for [ =
1 :m, (F"1);; has powers of A in (’”Tm> : (h + 1), while for [ = 1 : m it has powers in

HTm + 1) : (h+1). These sets are both equal to ceil (%) : (h+1) and independent
of m. Therefore, the claim holds in all possible cases. Bl

Proposition 5 (NVAR(p, 1): Long-Term Response to Persistent WN-Innovations).

Let y; evolve as in Eq. (2), and let x = aAx +v, with a =Y, oy. Assume y; is weakly
stationary. Then,

H
ayi t+H Ox;
lim =
H—o0 — 0uj t+h 6vj

— [ —ad)],, .

ij

Proof: First, note that x = (I — aA)~ v and therefore dz/dv = (I — aA)~!. Turning to
yi, under weak stationarity,

OYiru OYiin OYitn
= 1i = )
H;H;o HWZ S Z S

Ut+h

To find R, write y; in companion form as z; = Fz;_1 + ¢;. We have

OYein . Wsrh OZiyn %

= =1[1,,,0n,...,0,]F"[I,,0,,....0,] .
8Ut 8Zt+h 8€t 8ut [ ] [ ]

Since Y ;o F' = (I —F)7!

is given by the n x n matrix in position (1,1) in the np x np matrix (I — F)~!

Let M = (I — F)~! and partition it into p* blocks of dimension n x n, denoted by
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{Mmm}im=1p. Then, R = M;;. We have

I=M(I-F)
(1 — A —awA —o3A . —a, A —apA-
—I, I, 0, 0, 0,
Mll M12 Mlp 0 iy I 0 0
Mpr My oo My 0 0 —f I 0
I 0, 0, 0, -1, I, |

Comparing the left- and right-hand sides for block (1, p), we get
0p, = =M, A+ My, ,
which implies M, = My a,A. For block (1,1), we get
Op = —MyogA+ My — My, €2:(p—1),
which implies
Mg = My A+ Mg = Myjog A+ MyjosA+ My = ... = My (e + ... + o)A .
The first element gives
I, = Myl —agA) — My =My (I — (a1 + g+ ... + ) A) = My (I — aA)
which implies My = (I — F) ™), =T —aA)"". B

Proposition 6 (NVAR(p, 1): Long-Term Response to Persistent AR(1)-Innovations).

Let y, evolve as in Eq. (2), and let x, = aAx, + vy, with a =Y ]_, oy. Assume y, and x; are
weakly stationary, and assume (1 — p;L)ujy = cjy ~ WN and (1 —p,;L)vjy = €y ~ WN, with
p; €10,1). Then,

< Oy " O 1
I; 1,t+H — 1 i,t+H _ I —ad _1 o
Hg{l)o;:% &Ej’t% ng(lxzhz:% 8€j,t+h 1— pj |:( a ) L]

Proof: It holds that

h h
Oy, OTiyn OViyny OYisn OYyn OUpyn
= and =

Oe; —o OVyn O Oey —o Ougip—  Ogy
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By Proposition 5, under stationarity of x; and y;, we also know that

H
9z = lim Z Oy = (I —aA)™?

a’Ut H—oo =0 Ut

For x;, Oz p/0viipn— = 0 for [ > 1. We then have

al’t+H ox; t+h ox; t+h ov; t+h = [(I - aA)_l]
lim : Lirh Z b I —aA)™ ph= &
i S0t S5 s §1 s s Sy - 50
For y;, we have
H dy H h oy
. i,t+h _ 1 1,141 }.l_l
dm > HILH;OZZ—au.t ¢
y H
— | i,t+1
a : 1 H +1
— lim Z Yit+l
H—o0 ou;jy  1—p;
H  H—l+1

1 . 0Yi 11 . P; OYit11
= lim ~— — lim S
1= pjH—e lz:; Oujp  Hoo ,z:O: L—pj Oujy
By Proposition 5, the first term equals (1 — p;) ™' [(I — aA)*l]Z.j.

The second term equals zero. To see this, break it up as follows:

H-1 H—I+1
T Oy py Oy

H—oo =0 1— p] auj,t H—oco] — p] 8ujvt
The latter term equals zero since y; is stationary. The former term can be written as
H-1

Ay
=0

Let ¢ = H(1 —6) for 6 > 0 small. Since hm pHJrl ¢ = 0, it remains to be shown that the

limt of the second term in this product is ﬁnlte in which case the limit of products is equal
to the product of their limits, which is zero.
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Let p; = p;’f/(Hfl)fl. For ¢ small enough, p; € [0,1). We then have
H-1 H-1
. 105140 . Ji-1\' O e+t
! 1Mt =
a2, = dm 2 ) 5,

A.2 NVAR(p,1): Stationarity

Proposition 7 (NVAR(1, 1): Stationarity).
Let y;, = aAy;_1 + u;. Assume uy ~ WN and a # 0.
Then y; is weakly stationary iff | ;| < 1/|a| for all eigenvalues \; of A.

Proof: Let L4 and L be the sets of eigenvalues of A and aA, respectively:

The pairs of eigenvalues [; and \; are related by the identity \; = [;/a:

|l;I —aA| = |a(l;/al — A)| =a"|l;/al — Al =0< |l;/al — Al =0.
We have

yy is weakly stationary << V0 eL, || <1

o YihedL, [Ljd=ILl/la <1/l
4 V)\iEoCA, |)\Z’<1/‘CL| [ |

Proposition 8 (NVAR(p, 1): Stationarity I).
Let y; evolve as in Eq. (2). Assume u; ~ WN and oy # 0 for at least one I, and define
a= 37 loul.

If |\i| < 1/a for all eigenvalues \; of A, then y; is weakly stationary. Under oy > 0V I,
the implication is both-sided.
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Proof: Consider the NVAR(1,1) y; = aAy; | + u;. By Proposition 7, we know
y; is weakly stationary < |\ < 1/|a|] VN € La={N:|NI—A =0} .
It also holds that
y; is weakly stationary < |2f|>1 Vzi € Z"={z: | — z/aA| =0} .

where Z* is the set of roots 2z} of the lag polynomial (1 — aAL). Analogously, let

Z={z I —oqAz — ... — Az} | = |I — (12 + ... + 2} )A| = 0}
be the set of roots z; of the lag polynomial (1 — a; AL — ap AL* — ... — a; AL?). The proof
shall show
VzieZ*, |z>1 = VzeZ, |z >1.
We have

VzieZ", |2]|>1
& Vi eZ®, |azf|=alz|>a
& VzeZ, |uzi+..+opil>a
= Vzex, |u>1.

To show the last implication, suppose first that the statement on the second-last line is true,
but the statement on the last line is not. Then 3z; € Z s.t. |z;] < 1. In turn,

|1z + oo + p2?| <lagzi| + ... + a2l
< |agz| + ... + |apzi)
< (laa] + .+ p))lz] = alz] < a,

a contradiction. If a; > 0V [, the last implication is both-sided:

VZZ'EZ, |Z7,’>1
= VzueZ, |omzi+..+apzl| >(ar+ .. +ap)z] =laz|=alz]| >a. B

Proposition 9 (NVAR(p, 1): Stationarity II).
Let y; evolve as in Eq. (2). Assume uy ~ WN and oy # 0 for at least one 1.
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Then, y; is weakly stationary iff for all eigenvalues \; of A the p X p matrix

Oél)\i O./p)\i
L.y 0

has all eigenvalues inside the unit circle.

Proof: Stationarity of y; is equivalent to the statement that for all eigenvalues I; of

(a1 A asA ... a1 A oAl
L, 0, .. 0, 0,
Fr=10, I, .. 0, 0,
0, 0p .. I, 0,
it holds that |I;| < 1. We have
I — F| =0
<~ lf[ — lf_IO[lA — . liO{p_lA — Osz =0
e PPN = (o) + ag/li 4 oo 4 ap /17 A‘ =0

l;

I—-—A =0
(05} +O[2/ZZ+ —|—Oép/lf_1

& (B (a1 + ag/ly + oo+ ay /7))

li
p—ll_
ar + o/l + ...+ o,/

al=o.

This establishes a relation between the eigenvalues [; of F' and the eigenvalues A; of A.
Given an eigenvalue [; of F', we know [;/ (041 +ao/li+ ...+ ap/lf_l) is an eigenvalue of A.
Conversely, given an eigenvalue \; of A, all eigenvalues [; that solve

lf — l?ilAiOél — ... li)\iOép,1 — )\Z'Oép =0

are eigenvalues of F. This equation is the characteristic polynomial for eigenvalues of the
matrix

FX: |:(1/1)\Z‘ Ozp)\i:| m

L, 0

A.3 NVAR(p,1): Relation to Dynamic Factor Model
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Proposition 4 (NVAR(p, 1)-Factor Model Equivalence Result).

Let y; evolve as in Eq. (2). Then we can write
ye=ANfe +uy,

where fy = Cloqyi—1 + ... + apyr—p] € R", 1 is the rank of A, and A and C are full-rank
matrices that satisfy A = AC.

Conversely, let y, = Afy + &, with fi € R". Assume f; = ®1fi1 + ... + O, fi_p + m with
O, = P for alll and some ®. Then, as n — oo, we can write

Y= PrAYy—1 + .o+ OpAYyp Fup, ur = A+ &

where A = AO(WA)"*W and W is any v X n matriz with distinct rows.

Proof: The argument works for any p. For expositional simplicity, let p = 2. The
NVAR(2,1) can be written as

Y = Aloqyi—1 + aoYi—o] + uy .

Given r = rank(A), we can find n X r and r X n matrices B and C, both of full rank, such
that A = BC'. In turn, we can write

Yy = BC[alyt,l + CYQyt72] +up = Aft + u

where A = B and f; = Cloqyi—1 + ... + pYi—p).

Conversely, let

w=A+&, fi=Pifici+Pofia+ .

Using an argument similar to the one in Cesa-Bianchi and Ferrero (2021), take r distinct

vectors of weights w* = (w¥,...,wk), k =1:r, and consider weighted averages of {y;}1, of

the form
D whyu =Y wihifi+ Y wi.
i=1 i=1 i=1

For n large enough, & = Y7 | wké&, ~ O,(n/?) is negligible and we can write
Wy, = WAFf,

where the r x n matrix W stacks w" along rows. In turn, we can solve for f; = (WA)"1Wy;.
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As this equation holds for all ¢, we can re-write the process for y; as

Yy =N (P1froy + Pofro+ 1) +&
= A@l(WA)*IWyt,l + A@Q(WA)ilwyt,Q + Uy R

with uy = An, + &. If &1 = 1P and Py = o ® for some ¢, 9, P, this simplifies to

Y = AO(WA) "W o1yi—1 + dove_o] + uy
g ¢1Ayt71 + —'I_ qprytfp + ut

for A = AP(WA)"'W of rank . B

A.4 NVAR(p,q)

Generality of ¢ € N

Throughout the paper and in the remainder of this section, I discuss the NVAR(p, ¢) under
g =1 and ¢ € N\{1}. In Section 2.2.3, I mention that we can accommodate any q € Q,
by constructing a restricted NVAR(px, ¢*) with ¢* € N, at least in the case of Eq. (4), where
Y, is interpreted as a stock variable.

Consider first ¢7' € N\{1}, i.e. observational frequency is an integer-multiple of the
network interaction frequency. For example, under monthly observations, ¢ = 1/3 indicates
quarterly network interactions, and p signifies over how many past quarters transmission
is spread out. In line with Eq. (4), ¢, is observed in each period 7, which means that ¢,
must evolve at observational frequency. To make sense of ¢=! € N then, we can let the
stock g, follow an NVAR(p*, 1) with p* = p/q s.t. it depends on its value from ¢ until p/q
observational periods ago, which correspond to the last p periods at network interaction
frequency:

Qg if [ is multiple of ¢*

Y =AYy + o Y AYp e, = '
0 otherwise

In the previous example, the observed monthly series depends on its value in the past p
quarters, i.e. on its value three months ago, six months ago, etc., up to 3p months ago.*®

Consider next the general case: ¢ € Q4. We can write ¢ = q1¢> with ¢;* € N and ¢, €
N.% For example, under monthly observations, ¢ = 4/3 implies that network interactions

48Note that this assumes that transmission happens instantaneously at the end of each (network
interaction-) period. Alternative definitions of a smoother transmission inevitably lead towards abandoning
the paradigm of discrete time.

49Note that ¢ is the least common multiple of ¢ and 1, whereas ¢; is their greatest common denominator.
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occur every three weeks, ¢ = 4/5 that they occur every five weeks, and ¢ = 30/4 that
they occur every four days. We can model this case as a combination of the ¢ € N and
¢! € N cases: we observe every ¢, € N periods a snapshot of an NVAR(p*, 1) process with
p* = p/q1 € N and with parameters restricted as in the preceding paragraph. For example,
under monthly observations and ¢ = 4/3, this amounts to observing every fourth period a
snapshot of a weekly process that depends on its value three weeks ago, six weeks ago, etc.

If y; is observed for T periods — ¢t =1 : T —, then g, evolves for T, (network interaction-
Jperiods — 7 = 1 : T,. Thereby, T satisfies T' = |[{(1 : T)/q} N N|; the number of elements
in the set 1 : T, that are integer-multiples of g equals T'. This yields T, = ¢7" under g € N,
and T, = T under ¢! € N. For other ¢ € Q. , we have T, = ¢, T, where ¢, is least common
multiple of ¢ and 1.

NVAR(p, q): Granger-Causality/GIRFs and Stationarity

Proposition 2 (NVAR(p, ¢): Granger-Causality I).
Let y; evolve as in Eq. (4) for some ¢ € N\{1}.

Then, for k = ceil(hq/p) and some coefficients {c}r=rnq, we have
= [AEL']' o g [Ahq]ij '

Proof: By the definition of ¥,

Witrn  OUig+nyg  OUirthg  OUirthg

0y 0Uj.1q Y, - o0t -

The statement follows then from Proposition 1. B

Proposition 10 (NVAR(p, q): Granger-Causality II).
Let y; evolve as in Eq. (5) for some ¢ € N\{1}.

Then, for k = ceil(hq/p) and some coefficients {c}r=r:nq, we have

— o = A+ [AM] A R,

v

where R is a linear combination of A* for some k ¢ k - hq.
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Proof: We have

Yerh = (+h)g T - T Ut+h)g—q+1)/q 5
Y = (gtq +o Tt gttﬁqﬂ)/q .

Suppose the first (latest) term, g, is responsible for the change in y;. We then have

Ye+h _ I Yit+nyg + - + Jtt+h)g—q+1)/4q _ OYr4hq N OUrthg—q+1

agtq aytq Y- Y-

Y

and, by Proposition 1, connection-orders k € {ceil((¢(h — 1) +1)/p), ..., hq} matter. Analo-
gous calculations show that if the last (earliest) term, §,—4+1, is responsible for the change in
yt, connection-orders k € {ceil(hq/p), ..., hq + ¢ — 1} matter, while the cases in-between lead
to sets contained in the union of these two sets. Therefore, regardless of which term is re-
sponsible for the change in y;, 0y, 11 /0u; is a linear combination of A* for connection-orders
k in the intersection of these two sets,

{ceil(hq/p), ..., hq} = {ceil((¢(h — 1) + 1)/p), ..., hq} N {ceil(hq/p), ... hg+q—1} . B

Proposition 11 (NVAR(p,q): Preservaton of Long-Term Response to Persistent Innova-
tions under Time-Aggregation).

Let y; evolve as in Eq. (4) or Eq. (5) for some ¢ € N\{1}. Assume y; is weakly stationary
and (1 — p;L)u; = €;r ~ WN, with p; € [0,1). Then,

. ayt—i—H 0Yrin
lim = E .
H—oo he &th+h H—>OO 88T+h

Proof: If 3, evolves as in Eq. (4), we have Y15 = ¥(t+m)q, and so

Hgq ~ Hq ~ H ~
0 9 0j, 0jjr
lim Yirm _ lim Z Y+mg _ lim Yr+Hg _ lim Yr+H

gtq—f—h H—o0 h—0 aéfr-i—h H—o0 h—0 a5‘«:7'—&—}1

If y, evolves as in Eq. (5), we have yiy g = ¢ (Jrm)g + -+ Ut H)yg—q+1), and the same result
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is obtained:

Hgq
7y
lim 8:gt—JrH:lim Zq Zwl{h<}]q—k}
-0

q—1 Hq k
— ay(tJrH)q k
= gm0
k=0 h=0 tgth
Hq—k a~
Y(t+H)q—k

= lim 9
H—oo e
h—0 tq+h

. +H
= lim 2= 50 m
H—o0 >
h—0 T+h

Proposition 12 (NVAR(p, q): Contemporaneous Response to Within-Period Innovation).
Let y; evolve as in Eq. (5) for some ¢ € N\{1}. Assume y, is weakly stationary and (1 —
piL)uj; = E;r ~ WN, with p; € [0,1). Let &, = (€11, ..., Enr) .

Then, for g € 0: (¢ —1),

Proof: We consider the response of qy; = Zz;é Utq—k to a (high-frequency) innovation
€tg—g> 9 € 0: (¢ — 1) that occurs within observational period ¢. We have

qa(?yt :Zaytq kl{k< } Zay7+g kl{k< } Zaerrg k ZayTJrh‘
tg—g 0¢; OE.

Proposition 13 (NVAR(p, ¢): Preservation of Stationarity under Time-Aggregation).

For some q € N\{1}, let y; evolve as in Eq. (4) and let y; evolve as in Eq. (5). Assume
i, ~ WN(0,5).

Then, y; and y; are weakly stationary iff y, is weakly stationary.
Proof: Weak stationarity of 3, is defined by the conditions
L Elg.] =E[g-] V]

2. CO’U(QT, g.r,h) = CO’U(@T,Z, gT,l,h) \ l, h N

50The indicator function ensures that only responses to contemporaneous or past impulses are summed-up.
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3. V[g,] = Cov(gr,7,) < 0.
They imply that

L. Ely] = Eltig] = Elfiu-1)e] = Elye] V1,
2. Cov(ys, Yi—n) = Cov(Tiq, Yt—h)q) = Cov(Yt-1)g: Yit—1-h)q) = Cov(Ye—t, Ys—i—n) V I, b,

3. V[y] = Cov(ys, yr) < o0,

which in turn is the definition of weak stationarity for y;. Similarly, they imply that

L. Elyf] = Elgeg + ... + -1)g+1)/0 = ElJu—1)q + - + Y—1-1)g+1l/a = Ely; ] V I,

2. Cov(y;,y;_p) = Cov(ftg + o + Ta—1)g+1 » Jit—nyg + - + Q(t—h—l)q+1)/q2
= Cov(Ju-vyg + - + Y—1-1)q+1 » Yt—i—)g T - + Y—i—n-1)q+1)/@*
= Cov(y;‘_l, y:—l—h) Vih,

3. V[yi] = Cov(y;,y) < o0,

which is the definition of weak stationarity for ;.

The other direction is proved in contrapositive form: if g, is not weakly stationary, than
y: and y; are not, either. Write g, in companion form as ¢, = Fy,_1 + @,. If g, is not
weakly stationary, then limy,_,o, F"* = co. Hence, V[j,] = FV[j,_1|F’ +¥ diverges to infinity
as 7 — 00. (This holds if ¢, starts in the infinite past and also if it has been initialized at
some fo = (Jo; -, Jp11) with mean E[go] and variance V[go] < 0o.) The same holds then
for V[g,], the upper-left n x n block in the np x np matrix V[g,]. In turn, the same holds for

V[yt] - V@W] ’
q—1 qg—1

V] = Vi + -+ Ge1er)/€° = D VIig/@+ D Cov(ligi,G4)/q* W
=0 1,k=0,l#£k

NVAR(p, q): Networked Correlation of “Observable Innovations”

Proposition 14 (NVAR(p, q): Correlated “Observable Innovations” I).

Let y, evolve as in Eq. (4) for some q € N\{1}. Assume y, is weakly stationary and @, ~
WN(07 E) Deﬁne Uy = Yt — E[?Jt|%—1]; where g':f—l - {g'r—zp gﬂ'—q—l) } Then,

q—1

Viw] =L+ ) 0,56}, O =0jrin/0f .

h=1
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Proof: By sequentially inserting for 1, 1,7, 2, etc. in the expression for g,, we get its
VMA (00)-representation:

Jr = (I +0,L+0L% + ...+ 0, L7 +O,L + ..)i,

where O, = 07,/00;—n = O0Ur4+n/0y,. Combining this with the definition of u;, = y, —
E[@/t‘%fl] = gT - E[ﬂf’gﬂtfl]a Yt and 9;5,1, we get

uy = I+, L+ ...+0, 1L )i, .

(Any 4,5 is a function of ¢,_, and more distant lags of ¢, which means that u,_, and
earlier terms are contained in %_4.) Since @, ~ WN(0,X),

q—1

Vw]=S+) 6,50, . B

h=1

If ¥ = diag(c?, ...,02), then, by Proposition 1, for some constants {dzi,hj}hi,hﬁk(h):h:
h

n q—1
COV(uit7 ujt) = 0121 {Z = ]} + Z ‘73 Z Z dzi,hj [Ahi}io [Ahj]jo :
(h)

o=1 h=1 h;,hj=k

Proposition 15 (NVAR(p, ¢): Correlated “Observable Innovations” II).

Let y, evolve as in Eq. (5) for some q € N\{1}. Assume y; is weakly stationary and @, ~
WN(0,%). Define uy =y — E[y|Fi—1], where Fr1 = {Jr—q, Yr—g-1, .-} Then,

1 q—1 / h ) )
Vi = = <Z mn) , Th=) 6w, Oy =00 n/0j: .
m=0

q h=0

Proof: By sequentially inserting for ¢, 1,9, o, etc. in the expression for y,, we get its
VMA (00)-representation:

Jr = (I +O1L+60yL% + ...+ 0, L7 + 0,1 + ..)i, ,

where Oy, = 07, /0Yr—pn = 0¥r1n/0Y.. Therefore,

1 1
Yt = 6(277 ot Urgy1) = 5(1 + T L+l + 4 Ty L7+ DL+ )iy

where I'), = [ + anzl ©,,. Combining this with the definitions of u; = vy — E[y| F-1], v
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and F;_1, we get
1
up = ~(I+T1L+ ...+ Ty 1L N, .
q

In turn, since 4, ~ WN(0,3),

1 ik
V[ut]:? S4+Y L) .
h=1

If ¥ = diag(c?,...,02), then, by Proposition 1, for some constants {dﬁhhj}hhhj:m and
{dzi}hizlzha

n h

1 1 (i
COV(U/itaujt) = 501'21 {Z = j}+q—2 Z Ug Z Z dziﬁj [AhiLo [Ahj]jo

o=1  h=1 hy,h;=1

1 qg—1 h . .
+q_2032' Z Z dzi [AhlLo [Ahl]ij

h=1 h;=1

1 qg—1 h . '
+q_20i2 Z Z dzj [Ah]Lo [Ahj}ji :

h=1 h;=1

To illustrate Propositions 14 and 15, consider an NVAR(p, q) for ¢ = 2. If y, = g, for
t=7/q € N (as in Eq. (4)), then u; = @, + a3 Ati,_1, with

Viu] =X + ajAXA" .

This reveals that Cov(uy, u;) = 1{i = j}o? + i > _, aiajror. If instead y, = (g, + ... +

Jr—q+1)/q for t = 7/q € N (as in Eq. (5)), then u; = @, + 5(I + a1 A)d,_;, with

1 1 1
V[ut] = 52 + ZQ%AZA/ + Zal (ZA + (EA)/) )

which leads to Cov(ui,uj) = 1{i = j} 307 + jou(ai;o; + a;07) + 107 Y/ airajrop. In
the former case, Cov(u;,uj) is determined by common exposure to third units, while in
the latter case bilateral exposure matters as well. In either case, exposure means first-order
connections.” Under ¢ = 3, exposure is determined by first- and second-order connections:

51To understand the different results for stock and flow variables, assume for simplicity that there are no
self-links: a;; = 0 V ¢. For a stock variable, y;+ = @; -, which implies that u;; only depends on ; ,, not
on u;r—1: we have u;; = U + o1 2?21 aijljr—1. As a result, the only (possibly) common terms in u;;
and u;; are the one-period lagged high-frequency innovations of third units, % -1, and any comovement
between u;; and wj; is due to common exposure to these units: Cov (ui,u;¢) # 0 iff 3 &k s.t. aik, ajr # 0.
In contrast, for a flow variable, y;; = ¥;+ + ¥s,r—1, which implies that u;; also depends on @; r_1: we have
Ujp = Wjr + Ui r—1+ Q1 Z?zl ai;l;r—1. Besides common exposure to third units, comovement is also due to
bilateral exposure: a;; # 0| aj; #0 = Cov (us, uj) # 0.
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e.g. for a stock variable, we have u; = @, + a1 At, 1 + (aeA + a3 A%)i,_o, with

Viu] = S+ (0 + ) ADA' + afay (AD(A%) + [AD(4)]') + alAP5(42) .

Proposition 3 (NVAR(p, ¢): Limit Distribution of “Observable Innovations”).

Let y; evolve as in Eq. (5) for some ¢ € N\{1}. Assume vy, is weakly stationary and
i, ~ WN(0,%) is temporally independent. Define u;, = y; — Ely|F—1], where F_1 =
{Ur—qs Ur—g-1, - }. Also, let a =>"  ay. Then, as ¢ — o0,

Jau % N(O,I,SI) , T, = (I —ad)™

Proof: By the proof of Proposition 15, we know

1
= —FhuT h s Fh = Z @m s @h = 8yT+h/8yT .

m=0
Define uy, = Iyit,—p, with E[a,] = 0 and V), = V]a,] = I, XTY,. Consider d'u; = %Z‘};E d'uy,
for some d € R". By Lyapunov’s Central Limit Theorem,

q—1

—d’ up = — Zd'ah 5 N(0,1),
Sq Sl

where s2 = Y"1 d'V;,d. We know s2/q — d'V.d, V. = T, XT", (shown below). Therefore, by
the above and by Slutsky’s theorem,

Vadu, = %Sgd’ut 4 N(0,d'V,d) .
q

As this argument applies for arbitrary d, by the Cramer-Wold theorem, ,/qu; AN (0, V).

It remains to show that sg/q = %Z‘};E op — d'V.d = o, with 0, = d'V},d. By Proposi-
tion 5, as h — oo, I'y, — I'y. Therefore, V,, — I',XI, and 05, — o,. In other words, V § > 0,
JH st |op—0. <IVh>H. Also, for H < q—1,

1"1
|s(21/q—a*|: - (op—0.)

1=
H—1
1 1

< - |0h_0*|+_2|0h_0*
7%= 4=
L -l

< =) |op—ou+96.
q

h=0



This Version: 2026-01-23 A7

The first term vanishes as ¢ — co. Hence, V 6 > 0, lim|s2/q — 0.| <6, i.e. s7/q — 0. W
q—00
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B NVAR: Inference

B.1 Timing of Network Effects a|A

In all of the derivations in this section, A is taken as given, and the explicit conditioning on
it is omitted for notational simplicity.

NVAR(p,1): Asymptotic Properties of dors

The OLS estimator for a from Section 3.1 is given by

T -1ror n T Lra. T
ons — [zx,;,txn,t] lzx;myt] _ [zz] lzzy]
t=1 t=1

=1 t=1 i=1 t=1

Proposition 16 (Large n Consistency & Asymptotic Normality of &ors).
Suppose

~

. Model 1s specified correctly: y;; = x;,itoz* + Uy
2. Et,l[uit] =0.

3. The observed network adjacency matriz A, converges to some limit A, in the sense
thatVt and I,k =1 :p, as n — o0,

(a) 1370 (Aniyet) (Aniti-i) 2 E [(Awivet) (Awiyen)]; and
(b) % Z?ﬂ (An,i-yt—l)/ Uit £> E [(A*,zlyt_l)/ Uit} .

4. By qfugug| = 0% if t = s and zero otherwise.

b Vtandl,k=1:p, asn — oo,

]_ - / / /
% Z (An,i-yt—l) Uit i> N (E [(A*,i-yt—l) uit] Y% [(A*,i-yt—l> UztD .
i=1

Under conditions 1 - 3, Gors — a, asn — oo. Under conditions 1 - 5,

~ 0-2 —
\/ﬁ(aOLS - 04*) i> N (07 TE[I*zﬂ;n] 1> .
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By condition 1,

n T - n T n T
R 11 11
QoLs = oT ‘ E xnztxnzt oT E xmtfmta*‘i‘ ET E E T it Uit

=1 t=1 =1 t=1 =1 t=1

Condition 3 ensures that
n T T
1
E T, ztxn it % T E ]EZL’* ztx* zt )

zltl
n T

T
TLT an it Uit _> 71—, ZE L ztuzt

=1 t=1

are defined. By condition 2 and the Law of Iterated Expectations (LIE), E[x, ju;] = 0. As
usual, assembling these pieces by Slutsky’s theorem yields consistency.

To establish asymptotic Normality, write

\/_<aOLS - Oé* = [ Z Z Tn ztxn zt]

=1 t=1

n

T
E J:n itWit .
TL

=1 t=1

Condition 5 and Slutsky’s theorem ensure that

Zmetult — N <O \Y%

zltl

1 T
o Z L, it Wit )
as [% Zthl x*,ituit:| = 0. By condition 4 and LIE,

1 <& 1 <& /
<T ; x*,z‘tuz‘t> <T ; x*,isuz‘s)

Slutsky’s theorem then yields asymptotic Normality with mean zero and variance "—;

2

T T
1 g
- ﬁ Z Z E[x*’itx;,isuituis] = T E[I'* ztx* zt]

t=1 s=1

T
1 Z
= L it Ugg
T

t=1

E[xitx;t]_l

Proposition 17 (Large T' Consistency & Asymptotic Normality of dors).
Suppose

1. Model is specified correctly: y; = Xy, + uy.
2. Et_l[ut] =0.
3.y, is ergodic and strictly stationary (SS).

4. Et_l[utug] = .
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Under conditions 1 - 3, Gors — a, as T — co. Under conditions 1 - 4,
VT(aops — a.) 5 N (0, ELX/X)] E[X/XE[X; X)) |
By condition 1,

-1

aors =

L I L T L I
t=1 t=1 t=1
By the Weak Law of Large Numbers (WLLN) for ergodic and SS time series (condition 3),

1

Me

Anyr— l (Anyi—r) SE [(Anyt—l), (Anyt—k:)}
t:l

so that % Zt L XiX; & E[X/X,]. By the same condition and condition 2, % L Xl 5 0.
This estabhshes consistency.
To establish asymptotic Normality, write

ST &
fZXtXt] [ﬁZXtut].

t=1 t=1

By the Central Limit Theorem (CLT) for ergodic and SS time series, %ZL X{jug —
N (0,V[Xjw]), as E[Xju] = 0. Thereby, V[X[u| = E[Xjwu;X;] = E[X;¥X;] by LIE
and conditions 2 and 4. Slutsky’s theorem then yields asymptotic Normality with mean
zero and variance E[X/X,|'E[X/SX,JE[X]X,]7". If ¥ = ¢%I, the latter boils down to
o’ B[y 0 xpxl,] ' If in addition we can write E[Y " | zyal,] = nE[vya}], it becomes
e D A

Proposition 18 (Large (n,7") Consistency & Asymptotic Normality of dors).

Suppose either i) the conditions in Proposition 16 hold, or ii) the conditions in Proposition 17
as well as the following two conditions hold:

1. ¥ =021

2. Zz 1 E[‘TTL 1txn zt] - HE[I* ZtI* zt]

Then, vVnT (Gors — o) 4N (0,0°E[z, 2, ;,] ") as (n,T) — oo
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NVAR(p,q), ¢ € N\{1}: Identification

With A given, the problem of identifying a under g, ~ NVAR(p, 1) and {y;}{; = {91, }11
for ¢ € N\{1} is akin to identifying « in the AR(p) &, = a1Z,—1 + ... + @ T, + U, when the
univariate process Z, is observed every q periods: {z;}/_; = {4 }l_,. For example, under
p=1and g = 2, we have

2 42 2
yr = A%y +u, and @z = oy e

respectively, and in both cases «; is identified only up to sign. While characterization of
the identified set remains elusive for the former case for all but (p = 1,q = 2), the latter

case provides insights for ¢ = 2 and general p. For further discussion, see Palm and Nijman
(1984).

Let v, = E[#;Zy_n] = _n, which can be estimated by the analogy principle as 4, =
ﬁ Z?:h +12¢Zt—p. Under ¢ = 2, 4, is observed only for h even (and zero). The Yule-
Walker equations for an AR(p) lead to the system

" Yo - Ym—1
[70—02 Yoo Vm}:[Oél Qg ... Olp] 7,2 7_1 )
Yo Vp-1 -+ Y1 Yo

for m > p — 1. In principle, this system of (nonlinear) equations could be solved for the
unknowns {; }i=1., and {7, }n=13,.. However, the following analysis suggests that {a;};=1 3.
and {v;,}n=13.. are (jointly) identified only up to sign, respectively.

Let m be the largest odd number in 1 : m and m the largest even one. For the non-
observed {v;}n=13,., we have

Yo Y2 Y4 - Tm—1
4! Y3
[’}/1 Y3 ... ym}:[al Qo ... Oép] . : : 5
prfl '71%3
and therefore

T 71 Y0 Yo

Bl=A| B ra| P =g -Da| ], (A1)

’Ym 7@ Ym Ym

where only o, for [ even appear in A (and its elements are linear in «), and only a; for [ odd
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appear in A. For the observed {7, }n—02..., we have

goos?d

M Y3 - Ym-1
9 Y2 Y Y2
[’)/0 — 0 Y2 o o... ’}/m} = [Oél Qg ... Oép} . . . >
Yp Vp-2
and therefore
2
Yo — O 71 Yo
72 _ E 73 + E ’}/2 7 (A2>
Vm Tm Vi

where again only «; for [ even appear in B, and only «; for I odd appear in B. Eq. (A.1)
and Eq. (A.2) illustrate that multiplying (v1,7s,...) by (=1) as well as (ay,as,...) (ie. A

and B) does not change the system of equations.

Posterior Derivations: (a,X)

This section derives the conditional (full-sample) posteriors p(a|Yir, , ), p(X[Yir, , a), p(Baler; Aa)
and p(\;'|a, B,) in an NVAR(p, 1). To simplify notation, I ignore the possibility that Yiz,

has been obtained from a data augmentation step and write Yi.7, Xy, uy; and 3 for Y. T XT,

u, and .

Under u; ~ N(0, X)), the (conditional) likelihood associated with the NVAR(p, 1) is
T
P(Yimr|e, B, Yig, —pi10) = HP (Y16, Ye—pt—1)
t=1

; 1
H (2m) /2%~ I/Qexp{—éug]_lut}

=1
L
= (2m)"T2|2| 7T exp {—§ ;u;Elut} :

where u; =y — > 1, g Ay, = yp — Xy 1 write this likelihood in short as p(Y|a, X).

Under a Uniform prior for a, — p(a) o< ¢ —, we get

p(alY, Ba, Ao, E) o< p(Y|a, X)p(a)

ocexp{_%{ lzlext]a_ga Lz;xz y]}}
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which shows that

with
T

> ng-lyt] .

t=1

T -1
V, = ngz-lxt] , a="V,
t=1

Under a uniform prior for X, we get

p(X[Y; @) < p(Yle, ¥)

T
1
o |87 T 2exp {—5 Z uéE_lut}

t=1

1
= |27 2exp {_§tT [E_IU'U}} :
where U is T' x n and stacks u; along rows. This shows that

S| (Y,a)~IW(S,0), S=UU, v=T.

The mode of p(a, B|Y) is equal to the Generalized LS estimator (d, 3), obtained by it-
1 R
erating on the conditional estimators &|¥ = |3, X{E_IXJ [Zthl X%y, | and X|a =

1 T / :
T 21 Uuy until convergence.

NVAR(p,q), ¢ € N\{1}: Data Augmentation

The usual formulas for the Kalman filter and Carter & Kohn simulation smoother simplify
for the particular state space model characterizing the NVAR. This can be exploited for
computational efficiency.

Given an np x 1 vector z, let [x]; = x1.,, contain the first n elements, [z] , all but the
first n elements, and [z]_, all but the last n elements. Similarly, given an np X np matrix
X, let

_ [X]l,l [X]17—1 _ [X]_p,_p [X]—p,p _ [X]_p’. _
e [[X]l’l [X}lvj [[X]Pvp [X]pvp] [[X]p;] [[X]’ﬁp -

“p Y

where [X], | and [X],  are n x n, [X], is n x (np —p) and [X] , is (np —p) x rn.
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For a stock variable y;, the NVAR(p, q) for ¢ € N\{1} leads to the state space model

Y = [I’m Oanp—TL]S’T ift = T/q eN s
Sy =Rs; 1 4+v,, v, ~N(0,%,), forr=1:T,,

where s; = (7,91, -, Ur_p11) and v; = (u’,0,...,0)" are np x 1, and

R— OélA, OéQA, cany OépA :| and ZU _ |:2u Onxnp—n:|

]np—anp—n Onp—an Onp—anp

are np X np. For notational simplicity, write ¢, as x,.

Algorithm 1 (Kalman Filter for NVAR(p, q), ¢ € N\{1}, for Stock Variables).
1. Initialize soj90 = 0 and Pojo = Z?:o R'S,RY for h large.
2. Fort=1:T;, given s,_y,—1 and Pr_y._1,

(a): Forecast s;: compute S;;—1 and Pr;_1 as

L4 [37’|7’—1]1 = Rl,-ST—l\T—l 5 [ST|T—1] 1= |:S7'—1|7'—1i|7

p
o |:PT‘T71:| 11 R1,~P7'71|7'71R/17. + 2 ) |:PT‘T71:| 1,-1 = [PT‘Tfl}:l 10
|:PT‘T71:| 1,1 = [P‘rflh'fl} —p, R/L > |:PT‘T71:| 1,1 = [P7'71|7'71]

-p,—p
(b): Forecast x.: if T/q € N, compute x--_1 and Fy._1 as

® Trjr—1— |:8T|T—1i|1 5

L4 FT\T—I = [PT|T—1]

1 -
If 7/q ¢ N, skip this step.

(c): Given observation ., update forecast for s;: if T/q € N, compute s;; and Py,
as

® Srlr = Sr|r—1 + [PT|T—1] 1 F_l (‘TT - xT|T—1) )

. T|lT—1

L PT|T = PT|T*1 - |:PT|T71:| 1 FJ.:,1 |:PT|7‘71:| 1,

If T/q ¢ N, let Sr|r = Srir—1 and PT|T = Irjr—1-

Thereby, Ry . = [a1 A, azA, ..., ap)A = (v, ..., ) @ A, and [PT‘T_JI. = [PT|T_1]T1.
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For a flow variable y;, the NVAR(p, q) for ¢ € N\{1} leads to the state space model

yy=Vs, ift=71/qgeN,
Sy =Rs; 14+v,, v, ~N(0,%,), forr=1:T,,

where s, v, R and X, are analogous to above, but with dimensions np’ instead of np, where
p' = max{p,q}. Ilf p’ > p, weset y =0forl = (p+1):p. Also, ¥V = [I,, ..., I, Onxnip—q)]
is n x np’. Step (b) in the Kalman filter changes to

q

® Trr—1 = \I[ST|T7]. = E [ST‘Tfl}l ;

=1

q q
o Fp1=UP, 1V = Z Z [PTIT—l]zk ’

=1 k=1

and step (c) changes to

=1
® Srr = Srlr—1 + PT|T—1\IJ F (':ET - $T|T—1) )

T|lT—1

o PT\T = PT\T—l - PTIT—qu/FHi_l\IJPTlT—l )

where Py W' =300 [P = (VP 4)"

Algorithm 2 (Carter and Kohn (1994) Simulation Smoother for NVAR(p, ¢), ¢ € N\{1}).
1. Run the Kalman filter to get {s;|+, Szjr—1, Prir, PT|T,1}Z;1.
2. Draw [s2], from N (fsrn ], [Proe 1)

3. Fort=T,—1,..,0, given draw [s7,], from N ([sr41jr+2],, [Pratjrs2],,), draw [s7];
from N ([ST\THL’ [PT\T'H}H) with

®  Srlr+1 = Sr|r + PT|TR/1 <R1PT|TR/1 + 2)71 ([S::_l} 1 [ST+1‘Tj| 1) )
b PT\T—I—I = PT\T - T|7’R/1- (RlpT\TRll + 2)_1 Rl-PT|T .

Relative to the notation used for the Kalman filter, this is with a slight abuse of no-
tation, as s-r11 # E[s;|X1.r, 8741] but s;prp1 = E[s|X1r, [$741];], and similarly Py =
V [s7|X1:7, [Sr41];]. See Nelson and Kim (1999, p. 194) for the adjustments of the CKSS
required when s; is a companion form-VAR(1).
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B.2 Joint Inference: Network & Timing («a, A)

Posterior Derivations for A

Normal Prior Under independent priors a;; ~ N(b;j, A; '), the conditional posterior of
Al(@, S, B, \y) is

1 n
—3a > lay; - bz‘j)2}

ij=1

(]~
s
|
N
&
S~—
g
L
s
|
s
&
~—
———
®
8
i
—

H
Il
—

tr [S7H(Y — ZA) (Y — ZA")] } exp {—%/\atr[(A — B)(A - B)]} ,

I
Q)
=
3
|
= N = N =

tr [S7HA(Z'Z + \Z)A' = 24(Z'Y + AB'D)]] } .

which lets us deduce that
A | (Y, X)) ~ MN (A, U4, Vs) , with Uy =[Z'Z+ N5, A=Us[Z'Y +\BY], Va=3,
and therefore

Al (Y,a,X) ~ MN (A, V4, Uy) .

Note that —log p(A|Y,a, 3, B, \,) is proportional to the LS objective function with a
Ridge-penalty in Eq. (12). Therefore, its conditional minimizer is the mode of p(A]Y, o, X).
The (joint) minimzer of the objective function in Eq. (12) is the mode of p(«, A|Y, X, B, A\,)
under a uniform prior for a.

Exponential Prior Consider the alternative prior a;; ~ Exponential()\,). It leads to the

conditional posterior
P(A]Y, a, 3, Aq) o< p(Ya, A, Z)p(A|Aq)

Z (ye — Az) 70 (y — Azt)} exp {—Aat Ar}

tr [S7N (Y — ZA) (Y — ZA')] } exp {—Ngt' AL}

|
I Y S Y

x exp {— tr [T AZ'ZA = 2A(Z'Y — Au'S)]] } :
52Note that i g (@i — bij)? = vec(A — B)vec(A — B) = tr[(A — B)(A — B)]. Also, I use the results
that tr[AB] = tr[BA], tr[A] = tr[A’] and c tr[A] = tr[cA].
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where ¢ is an n-dimensional vector of ones.?® This leads to
A" (Y0, 2, 0g) ~ MN (A,U4,Va) , truncated to Rf ,

with Uy = (2'2)", A= U, [Z'Y — \u'Y)] and V4 = . Alternatively, this can be written
as

vec(A') | (Y, o, 2, A;) ~ N (vec(A),Va®@Us) , truncated to ]Rf :

Note that —log p(AlY,a, X, \,) is proportional to a LS objective function analogous to
Eq. (12), but imposing restrictions a;; > 0 and using a Lasso-penalty A, 223:1 la;;| =
Ao 223:1 a;; to shrink a;; to zero.

This expression simplifies under > = [:
A | Yo, 2 =1,\,) ~N ((151')1-7., UA) , truncated to R ,

independent across rows i. One can draw from this distribution using Gibbs sampling,
iterating on the conditional densities

ai; | (Ai—;, Y, 0,2 =1,\;) ~ N(pu*,5%) , truncated to Ry
for j =1 : n, whereby
= (A + (Ua)j—(Ua) 5 j(Aiy = (A)imy)  and B% = (Ua)y; — (Ua)j—5(Ua) 5 ;(Ua)—js -
Analogously, the mode of this distribution is obtained by iterating on the conditional modes

T
i — Ai—jz—j1)2it — Aa
dijl(Al}—jv «, Y= ]7 )‘(l) = max{O, az]} ) dij = Zt:l(yt 7: ]Z2 N)Z]t
> i1 Zjt

(see Meng and Rubin (1993)). Doing so for all rows i yields the mode of p(A|Y, o, ¥ = I, A\,),
which is the conditional OLS estimator of A.

NVAR(p,1): Asymptotic Properties of (Gors, AOLS)
Let 6 = (a, A). As elaborated on above, the OLS estimator solves

0 = arg mz’n Qnr(0;Y),

with Q(0;Y) Zut +A i(aij —by)*,

ij=1

®3Note that > ., a;; = {/Ac. On top of the rules referenced above, here I also used o’ Ba = tr[Baa'].

1,7=1
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with u,(0) = y — Az = y — Xy and A = %x\a. To render (a, A) identified, fix «; for
some [ and drop it from «, with appropriate redefinitions of w;, 2; and X;. Under the
alternative normalization ||«||; = 1, the following consistency results would go through, but
the interior-requirement for asymptotic Normality would be violated.

Proposition 19 (Large 7' Consistency & Asymptotic Normality of 6 = (&, A)).
Take © = [—c, c]p_1+”2 for ¢ > 0 large such that © C RP~"* s compact, and suppose

Yy 1s ergodic and strictly stationary (SS).
E[X;X;] and E[zz]] are of full rank.

Model is specified correctly: v, = AX o + .
E; 1[w] = 0.

S v e

]Et—l [Utug] =>.

Under conditions 1 - 3, = (d,fl) 2 0y as T — co. Under conditions 1 - 5,
VT (05 —6) > NO,H"MH™")

with H and M defined below.

By conditions 1 and 2, @, 7(6; Y") converges uniformly in probability to the limit objective
function Q(6) = 1 [u;(0)"us(6)], which is continuous on ©:

T n

T

S w6 ua(8) — B [ (6 ()] + xS (g — b))

t=1 ij=1

‘ ].
sup |—
pco I

Lo }% > (6 ) ~ B[ (6) w(0)] + sup X3 (05— )|

n
0cO i,j=1

converges in probability to zero because, under condition 1,
n n n
sup ‘)\n,T Z (aij — bij)2’ = )\mT Z(C + bij)z S )\mT Z c= )\anzé —0 s
0cO = = <
4,j=1 1,j=1 4,j=1

where ¢ = max; j(c + b;;)?, while under condition 2, %ZL wy (0)us(0) 2 B [uy(6)uy(0)] by
WLLN for ergodic and SS time series. Finally, under condition 3, Q(#) is uniquely minimized
by 0y = (cu, As) defined by the first-order conditions (FOC)

A = E[X(A) X (A TEX(A) y] . Adlow = Eyezi (o) TE[ze(an) ze(0n) ]
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Note that for ¢ large enough, we necessarily get a solution 6y € int(©). Without the imposed
normalization, 6y would not be unique, as for any (a., A,) that solves the above, (ka,, k™t A,)
for any k € R does, too, because X; (k7 A,) = k71X (A,) and z(ka,) = kzi(,).?

— ~
Write A for vec (A). Note that v/TA — 0 by condition 1. By condition 2 and the CLT
for ergodic and SS time series,

GQmT(O;Y)
VTQU(00:Y) = VT a@micze;)]
oA =0,
11 T ,
= = - X XOé*
:_2[“ s S NGO, M) |
LU ST (g — Az — VTAA, - B
because
2 |E1Xi (5 — Xeow)] 2 [E[X/u,]
- = —— — —
n | El(y — Az)2) | Elugz]

by conditions 3 and 4. Using conditions 4, 5 and 6 as well as LIE,

E [ X[uu, X
M:i [L}ttt] o :i E[X/TX,]

n? |E [[utzg]ngt] E |:[ut2£] %A 1 n? |E[z @ 3X;] Elzz] @ X%
Furthermore, using again the WLLN for ergodic and SS time series as well as conditions 4
and 5,

aQn T(a Y) 8Qn T(e Y)

/
g vy — | 000 2 Hyy Hy —H voro
i) = | sauo 88%22' o Mha] )

5"With oy dropped, it still holds that X;(k=1A,) = k71X, (A,) and 2z (ka.) = kz(a.), but the y; in the
expression for «,|A, is in fact y; — Ay;—;, while it is unchanged in the expression for A,|a,. This renders
the solution unique.
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with
0Qur(0:Y) 2 ET: L 2
—_— = X, Xy = —E[X;Xt] = Hi,
OJadao! nT — n
T (yt - XXta/)Xt,L - thAXt AE[thXt]
9Qnr(0;Y) _iz : 2 : _
Py 7D ) PN S R NI )
= (e — XXpa) Xy — 200 AXG ARE[ 24 X ]
2 @ 2141, Elz ® 211,
0Qur(o:y) 2 Ia|FET| oy (R E bl .
0ADA Ea A Elz, @ zpi 1]

Consistency and asymptotic Normality also apply under a Lasso-penalty for A, although
no analytical expression for the conditional estimator can be found in that case. Under
a;; > 0, only consistency goes through as A, is (likely) not interior.

—
5To see this, note that [(y, — Az)z{] consists of n stacked vectors with the one in position I given by
(ye — Az)zi = (yr — AX o) Xy .o, whose derivativate w.r.t o is (y, — AX )Xy . + 210.AX,. Moreover, note

—

that [Az:z;] consists of vectors of the form Aziz; = [A1.zt21t, .., An.2e21t)) whose derivative w.r.t. A gives
Zé & thIn~
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C Business Cycles by Lagged 10C

C.1 Theory

RBC Model with Contemporaneous Input-Output Conversion

In this case, the amount of good j purchased at ¢t and used in the production at ¢ coincide:
T = xf = xY. Because the environment is static, I drop time subscripts for notational
simplicity. Firm 7 solves the problem

n n
. - ans g
max  pizl; H (z9)™ — wi; — ijx” '
=1 =1

lz7{x” }?:1

The first-order conditions (FOCs) w.r.t. [; and z give

I = bipiyi - aijpiyi .
w pj

The latter FOC provides an interpretation of a;; = (p;jz*)/(p;y;) as the value of good j
purchased by sector ¢ divided by the value of sector i’s output. Plugging these expressions
into the production function and taking logs yields

n
ﬁlzkf—i-Zawﬁ]—Zz = ﬁ:kp‘i‘Aﬁ—g,
j=1

where p; = In(p;/w) and Z; = In(z;). The constant kY = — [biln(bi) +Z?:1 aijln(a,-j)]

reflects differences in the reliance on different production factors across sectors i.
The representative household’s problem is

n n
max Z% In(ci/vi), st Zpici =w.
=1 i=1

{eitio, i=

The FOC yields ¢; = %%. Hence, 7; is the share of good 7 in households’ expenditures.

Market clearing for good j requires y; = ¢; + » ., «*. Plugging in the expressions for
¢; and 7 and multiplying by p;/w yields the following expression for the Domar weight of
sector j, Aj:

AJE%:VJ‘{’ZCLZ]/M <~ )\:’Y+Al/\
i=1

As aresult, A\ = (I—A")"'v. The Domar weight of sector i reflects its importance as a supplier
to relevant sectors in the economy, where relevance is defined by households’ expenditure
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shares {v;}7_;: Ai = D27, Yjlji- 1ji is element (3, i) of the Leontief-inverse (1 —A)~". Tt sums
up connections of all order from a sector j to a sector ¢ and therefore shows how important
sector ¢ is in j’s supply chain. Using the definition of )\;, we have ¢ = P P, where § = In(y)
and A = In (\). Combining this with the equation for j yields

y=k+Ay+ 2,
with kY = (I — A)S\ — kP. For the sake of completeness, labor market clearing requires
Yoy li=1and gives w = >""" | bipiy;.
RBC Model with Single-Lag Input-Output Conversion

Assume good j used in production at time ¢ is purchased at time ¢ — 1: z;;; = x?_ ;- Firm
1’s value function is then:

n
ij " _ g " azj ij
Vi({xH j:l) = mazr I+ BV, ({fvt j:1> : = pirziclss || i D) = wldy =Y paay
j=1

7,t 7{xt] }n

The FOC w.r.t. l; and xf;j give

PitYit ij Pit+1Yit+1
lz’t = bz l‘t = 6@1‘]'— .
Wy Djt

Plugging these expressions into the production function and taking logs gives

Die = kb + Z QiPji—1 — 2 & pr=k 4 AP — %
j=1
where again iy = In (pf) and %y = In(z). Also, k) = k' — (1 — b)G¥, | with k7" =
= [bin() + Sy ayin(Bay)| and Gy, = (G, L), Gy = wi/ws.

Provided that in every period t households spend all their period ¢ income, w;, we again
get ¢ = y;w/pir. By market clearing of good j, then,

Dig lyzt 1
Yjt = Cjt+zxt - P)/]_ +Zﬂ zg¥ .
=1 pj =1 pjt
Multiplying again by p;; and dividing by w, gives

YjiD; - w» w
/\jt = % =7t Z ﬂaijGtH,t/\i,tH < M=+ BGt—l—l,tA,)‘t-i-l .

t i=1
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Stacking this equation for all ¢ and solving forward shows that, compared to the static
economy above, Domar weights are adjusted for future changes in the value of the numéraire:

[e.e]

=3 5G|

h=0

For output ¢, = 4, — p;, we obtain
~ yl ~ ~
U =ki +AY1+ Z,

where kV' = N — AN — kP! and again §, = In(y;) and N\ = In(Ap).
In the steady state (SS) with 2, = 2V ¢ we get

A= =AYy, p=U-A)TF' -2, p=0I-A)7" (k" +2),
where kP! contains elements k7', and k' = (I — A)X — k?'. Relative to the static economy
above, the meaning of a;; changes slightly: in SS, it equals

a; = B (pjx")/ (piy:) -

Taking this into account, the SS value of X\ is unchanged. p is slightly higher than in the
static economy, as k' = kP — (1 — b;)In(B) > kP. For the same reason, 7 is slightly lower.
These differences vanish as § — 1.

RBC Model with Multiple-Lags Input-Output Conversion

I start with the general CES case. Firm ¢’s problem is then

oo
t ij _ ] ij o
maz E By stz =xf, + x50, V4,7,
{l.i?,{:ct Tet—10 =0
xz{t—Z}?:l}toiO

aj;;

n n
_ L, e g
Hit - pztzztlftl H |:051 (Igtfl) + oo (I;{tfg) ] — wtlit — ijtx? .
j=1 j=1
For each input j, the firm chooses how much to buy in period t, x? , and how to distribute
the purchased amount for production over periods ¢t + 1, + 2. Abstracting from perfect

substitutability allows me to ignore the boundary constraints [;;, xﬁu,m x>0V 14,5

Let i‘iihi be the amount of good j purchased at ¢t and not used up in production before
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period ¢t + h. We obtain the following value function:

(i i an ) | ([ Zii n
Vi ({xt,t—zaxt,t—l}jzl) = max 1y + BV, ({$t+1,t—1a$t+1,t j:l)
lit7{xzjz
xiftfuwiftfz}j
Jij o ij
8.t LTig—2 = Tit—2

Sij g

Tiv1e = Tt

R ij
Tyl = Tipq T T -
The problem can be written more compactly as
n 2ij
ij “ij on bi ij ij T i \T] T
Vi <{It,t727 Lep—1 j:l) = max pitzitl;s H [041 (xt,tfl - xt+1,t71) + (‘rt,t72)

ij
‘lz:tv{‘rz )

xt+1,t—1}j

n
ij
— Wil — E Dty

Jj=1

+ BV; ({‘Tg-l,t—lv mij}?d)

In each period ¢, and for each input j, a firm only chooses how how much to buy in period
t — to be used for production in t + 1 and ¢ + 2 — and how much of the leftover amount
purchased at t — 1 to use at t as opposed to leaving it for t 4 1.

Cobb-Douglas Aggregation of Inputs Purchased in Past Under » — 0, we have
o ij i ij a2 . . L. .
Tijt = (It’tfl) (It,tq) and the optimality conditions yield

PitYit ij PitYit ij

2 DitYit
lit = bl y xt,t—l = ﬁalaij s xt,t—? = B Qolij .
Wy Djt—1 Pjt—2

Inserting these expressions into the production function, leads after a little algebra to

P = kP + Z ailonpji—1 + copji—o —Z & P = kP 4+ ay A1 + an APy — 5
=1

where k7 = kP> —(1-b;) [alé}f‘jtfl + 042@?”15,2} and k? = —biln (b)) =7 ai; [arln(Baraiy) + asln(B*azaiz)

The market clearing condition for good j is now

n n n
_ iy ij 5]
Yjt = Cjt + E Ty = cj + E Tipiqt E Titog -
i—1 i—1 i—1
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Plugging in the optimality conditions and multiplying by p;:/w, to solve for \;, gives

n n
w 2 w
Ajt = 5 + 5041Gt,t—1 E aijNig1 + B 042Gt,t—2 E AijANip+2 -

i=1 =1

When stacked for all 7, one could solve forward to obtain \;. For output we get then
Jo =k + a1 A1 + a0 Ao + 7,

where kV* = N — AN — AN — kP2,

In the SS with z; = 2V t we get
A= (I (Bon+ FPa)A) Ny, p=(I-A) (k2 =2), g=T-A)7 (k" +2).
In this economy, we have
aiy = [Bor + Baa] " (0ya™)/ (piys)

Again, ) is unaltered relative to the static economy, while p increases and y decreases, owing

to the increase in k> = k¥ — (1 — by)In ((Bar)* (B2a2)®2) > kP. Differences to the economy
with one period-lagged input-output conversion vanish as «; — 1, and differences to the
economy with contemporaneous input-output conversion vanish as § — 1 and either a; — 1
or oy — 0. Decreasing «; starting from oy = 1 decreases kY % and therefore increases prices
and decreases output.

General CES-Aggregation of Inputs Purchased in Past For general r, the optimality
conditions yield

1

1
YitDit ij YitDit |7 ij o YitDit |77
lit =b; U e aijalﬁ—r » Lep—2 = aij3 — )
Wy Pjt—12;54 Pjt—2T ;4

Inserting the resulting expressions into the equation for z;;; gives

1—1r

T T
s - T _r_ 2\ ——
Tijt = QijPitYit |:n1pj7t_1 + n2pj7t—2i| ;o= ar(anfB)T g = ap(apf) T

In turn, inserting this equation back for z;;; in the expressions above yields:

_r _r
ij  _ Pl UG ij Pl )
Tie—1 = aijp ) T T ijp , —= .
Jit— Pjt—1 ) 7" Jst— Djt—1 -
ny + ng | 22— ny | 22— n
17 (pj,t—2> 1 <pj,t—2> e

2 (e D)

*Note that £ # z;;. In terms of x;;, we have a;; = xi;p;/(piyi)(Bar) ™ (B2as) ™
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Inserting the expression for x;;; into the production function gives

n T T aijﬁ
Gv 1 Gv 1= "
1 . bbi * aj tt—1 + t,t—2
= Zit0; Dit Qi |1 Nog——
i Dji—1 Pji—2
where p}, = pi/w;. Linearizing around the SS characterized below leads to

A~k 2 A~k Ak 2 A~k 2 Ak Ak 2
Py =cy + Z @i [lej,t—1 + szj,t—z] —Zi & P =c +X1AD + XA o — &,
j=1

where 7 = —(1—1b,) [Xléqilftq + XQC;’};’FQ} , X1 =n1/(n1+n2) and x2 = 1—x;. Inserting the

optimal choices of cj, xﬁu and xiﬂlt into the market clearing condition for good j yields

n n_r n no
_ 1 w 2 w
Aje =5 + E :aij = G gNip+1 + § :aij — GiiotNit+2 -
. Pi,t -r . Pit -
i=1 n Nng | —— i=1 ny | —— n
1N (Pi,t—l) 1 Pi,t—1 e

Using the relation ¢; = A — Dy, we get
9r = & + x1AG-1 + XoADi—2 + 1
where ¢/ = &* + M — X1A5\t_1 — X2A5\t—2-

In SS,

Sy -1
A= (=B L AT ) G (- A ),

N1+ na

where kP contains elements k> = —b;n(b;) — 3", ai;ln(ay) — (1 — b;)="In(ny + ny) and

- =1
kv3 = (I — A)\ — kP3. Also,

C.2 Data
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C.3 Estimation

Likelihood Evaluation

Under g = 1, the model with contemporaneous IOC (Egs. (15) and (17)) yields the following
state space form:

st =Py + D151 +ve, Ay = Vs,

where s, = (Ay;, e}, ef) and v, = (0,¢},e¢) ~ N(0,%,) are (2n+ 1) x 1, ¥ = [I,,,0], and

Ly 0 L I 00 0
Py=10 , =0 P Of, X,=10 %X 0},
0 0 0 pa 0 0 o2

and we further define L = (I — A)™! to be the Leontief-inverse and P and ¥ to be diagonal
matrices containing (py, ..., p,) and (02, ..., 02), respectively.

To write the model with lagged I0OC (Egs. (16) and (17)) in state space form, let p =
max{p,q} and oy = 0 for [ = (p+ 1) : p. Define the (np + n + 1) x 1 vectors s, =
(AT, s ATy 5iq,€h,e2) and v = (0, ...,0,¢7, %)’ We have the analogous state space form
as above, with

Y ozlA Oéﬁ_lA OéﬁA I A 0 0 O 0
0 . 0 0 0 000 0

Py = P, = npn Y, =
L S I 0 0 P 0]’ 003X 0
0 0 0 0 pa 00 0 o2

Under ¢ = 1, we observe Ay, = Ay,, meaning that ¥ = [[,,,0]. Under ¢ > 1, we have observe
Ay, = Z?;Ol AGr_y —ie. U =[I,,..,1,,0] —only for periods t = 7/q € N (see Section B).

Prior-Construction & -Drawing
The Uniform prior for a € [0,1]"~" N {a: 37~ ay < 1} can be broken up as follows:

plat, ., ap-1) = plai|ag, ..., ap-1)plaz|as, ..., ap-1)...p(p—2|ap-—1)p(ay-1) ,

where for [ =1:p— 2,

I (13202 a"‘)ljl if g € [ Zm i1 am]
plalarsy, oy opr) = ¢ (X020 am) :

0 otherwise
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and

(-1 (1—apf  ifa,e0,l]
p(O‘p—1> = . :
0 otherwise

To draw from p(a,...,p_1), I draw «a,_; from its marginal distribution and iteratively
draw a,_s, ..., @; from the conditionals, using the inverse-cdf method in each step: to draw
yi ~ f(y), T draw z; ~ U(0,1) and find y; so that [* f(y)dy = ;. In the present case, this
yields

p—1

(st oy py) = (1— > am) [1—(1—2)"], x~U@1),

m=[+1

forl=1:(p—2),and ap 1 =1— (1 -2, )/ 2, ~UO,1).

For the parameters (02, 0%)" € Rt an upper bound has to be chosen so as to specify
a proper Uniform prior distribution, since draws from it are needed to initialize the SMC
sampler. A high upper bound is desirable so as to avoid domain restrictions in areas with
non-trivial likelihood values. However, for efficient sampling, lower values are preferred. I
choose a low upper bound to initialize the sampler, but allow the algorithm to disrespect
it in search for parameter-values associated with high likelihood values and therefore high
posterior mass. Ex-post, I redefine the upper bound as the largest posterior draw among

2 o) across all models. The resulting MDDs could be re-scaled to take this into account,

(72,

but this is not necessary, as all models’ MDD is “oft” by the same proportionality constant,
2

i

which means that the ranking is unaffected.’” T set 67 = 0.5V[Agy] and 62 = max; &

SMC Algorithm & Parameter Transformation

I use the adaptive tempering variant of the SMC algorithm (see Cai et al. (2021)), which
ensures a precise estimation of the posterior even as the distance between the prior and
posterior distributions is difficult to assess. For efficient sampling even under tight domain
restrictions, I reparameterize the parameters in the mutation step of the SMC algorithm as
follows. Define the function g s.t. 6 = g~'(0) is generated by transforming oy into In a;/a,
forl=1:(p—1),0?intolno? fori=1:n, and p; into Inp; /(1 —p;) fori =1:n and i = a.
These are one-to-one mappings and ensure that § € R. As a result, no draws in the mutation

5TLet s = (02,0%)" € [0,5]"". We get the MDD

a’

p(Y) = /p(Y|9—s7S)P(9—s)p(5)d(9—s75) =5 (D /p(Y|9—S78)p(9—s)d(9—s75) :

If the upper bound is ex-post rescaled to s*, the MDD needs to be corrected by multiplying by (5/s*)" .

The analogous holds with heterogeneous upper bounds.
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step are rejected because of domain violations. To account for this reparameterization, the
acceptance probabilities in the mutation of particle ¢ in iteration n are adjusted as follows:

Algorithm 3 (Particle Mutation in SMC Algorithm).
1. Given particle 0%, set 050 = 0! |
2. Form=1: Nypg:
o Compute 05 = g~ (0:™1) and draw

olo;m =t ~ (o6, = N e Ba) = N(gH (0,71, 6 8n) -

n

o Set

ei,m —

n ?

gim—1 otherwise

{v —g(®)  wp. a(vlgi)

where

ol g1 — mmin p(Y]v)p(v)/q(v]0;" ")
el =i 1 S T}

The densities q(v]05™1) and q(05™|v) are obtained using analogous density
transformations starting from q(9|65™=1) and q(65™v), respectively; e.g.

q(v]6;" ) = (g™ ()| DI ()]
where J(0) is the Jacobian matriz.
3. Set 0 = gNum

Note that because G(g~'(v)|0™1) = G(g~1(05™ 1) |v) is symmetric, we obtain

o161 = min p(Y|v)p(v) |J(‘9fim_1>’
S {1’pmez;m-1>p<e:;m-l> @) } |

The Jacobian matrix J(6) = 06/0¢' is diagonal and leads to
-1
{sz 1_pz } {HO‘Z} {pa 1_pa)} ' :

C.4 Results
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D Dimensionality-Reduction by Parsimonious NVAR

D.1 Hyperparameter Selection

Marginal Posterior Mode of \, Under a Normal prior for A and a uniform hyperprior

for \,, we obtain
p(AalA, B) o< p(A[B; \a)

ooxeap{aarla-Bya-m)

whereby tr[(A — B)'(A— B)] = .7 ._ (a;; — bi;)*>. This shows that

| (A, B) ~ G (”; 41, %tr (A— BY(A— B)]> |

Under an exponential prior for A and a uniform hyperprior for \,, we obtain

P(XalA) o p(A[Aq)
o N exp {=Aat' Al}

which shows that
A | A~ G (P41, JAL) .

Conditional MDD under NVAR-R By Bayes’ theorem,

P(Y|A, )p(A|Aa, B)p(Aa)
p(yl)‘aa ) 7

p(A|Y7 /\a7 B7 ) =

where - stands for the remaining parameters affecting the likelihood, («a, 33). The conditional
MDD p(Y'|A,, -) is obtained by rearranging this formula, inserting the known expressions for
the densities p(Y|A, ), p(A|A., B), p(Aa) = ¢ and p(A|Y, A, B, ), and cancelling all terms

involving A:

_ p(Y]A, )p(AlAa, B)p(Aa)
p(Yl)\a; ) - p(A|Y, >\a7 B, )

n n2 ﬁ n
)T IS] Feap {1 Ty wiS u } (2m) % A eap {— A Tl (s — b))

= C

(2m) =% [Val "5 [Ual"Zeap { —5tr [U3(A - AYVIHA - A)]}

n — n — n ﬁ 1 T n — —_ — —
= c(2m) "2 |S| 72| Va| 2 |Ua|E A exp {—5 [Z YS Ty A Y b —tr [U AV A
t=1

i,j=1

} |
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D.2 NVAR-R: Network-Construction Using Multiple
Link-Types
Parameterizing B by b;; = wfj‘ﬁb with a hyperprior 8, ~ N(0, A, '), we get
P(Bol A, Ay Ap) o< p(A| By, Aa)p(Bs|Ab)
X erp {—%/\a (vec(A) — Wbﬁb)/ (vec(A) — Wbﬂb)} exp {—%/\bﬁgﬂb}
x exp {—% (85 (AW WP + N I) By — 285 (AW Pvec(A))] } ,
where W? is s.t. W3, = vec(B). This shows that
By | (A A A) ~ N (B, Vi) o Vi, = MWW+ NI By = Vs, [AW P 0ec(A)]
Further specifying a hyperprior p(\y) o< ¢ for A, yields
p(AolBp) o< p(Bo| M)
X )\];bﬂ@xp {—%)\bﬁfﬁb} :

where k, = dim(f,). This implies
k 1
Ab\ﬁwG(b ,§6gﬁb>.

There are two special cases. Under A\, = 0, we use a Uniform prior for A, and S, and A,
become irrelevant to the estimation problem. As A\, — oo, we effectively reparameterize A
as B, which, if the elements of B are parameterized as b;; = w; ﬁb, means that the above
posterior for £, changes to

By | (Y2, 0) ~ N (By, Va,)

with
T -1 T
Vs, = | D_XVSTXP+ NI | Be=Va, [ D XISy
t=1 t=1
where X = [Byz, Bgzt, ..., By, 2] and By, ..., By, are n x n matrices containing the different

link-types in W?, i.e. w = (Bijs - Br,ij) and A = B = B1y1 + ... + By, Bo.k, -
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D.3 Factor Model Estimation
Consider the dynamic factor model

yt:Aft+Ut7 utNN((];EU,)?
fi=®1fici+ .+ O fip + 11, ne ~ N(0,%,) ,

where y; is n-dimensional and f; is r-dimensional. The normalization of Geweke and Zhou
(1996) sets X, = I, ¥, = I and takes Aj,.. to be lower-triangular with positive diagonal
elements. The VAR(p) for f; can also be written as

fi=aF'®+n, or F=X"®d+N,

where o = (f{_y, ..., fi_,) isrpx 1, ® = [®y,...,®,]" is rp X r, and the matrices F, X*" and
N stack f], zf" and 7, along rows, respectively. The factor model permits the state space
representation

yt:[A,07...,O]St+ut, U,t"\-’N(O,I),
s = Rsy_1 + vy, vy ~ N(0,%,) ,

where s; = (f{, f{_y, ..., fi_,)" and v, = (1,0, ...,0)" are rp x 1, and

Oy, Dy, ..., D,

]TP—T Xrp—r Orp—r Xr

R:

] and X, = {] Orwp_r}

OTp—T‘ Xrp

are rp X rp.

The aim is to find the joint posterior p(®, {\“}r_ |, {\N}",|Y), where Y = Yo =
{y1, ..., yr}, A" is the ith diagonal element of Ay.,.. and A" is the vector containing the remain-
ing free parameters in A; ., the ith row of A. It is achieved by treating S = Sy.r = {s1, ..., s7}
as parameters and obtaining first the posterior p(A, ®,S|Y). A draw from p(S|Y, A, ®)
is obtained using the Carter and Kohn (1994) Simulation Smoother, while under Uni-
form priors for ® and A, we can analytically derive the conditional posteriors p(®|Y,.S),
{p()\“|Y, S? )‘l)}::I and {p()‘l|Y7 57 )‘u) ?:2'

Drawing from p(A|Y,S) Given that u; ~ N(0,I), the measurement equation consists of
a set of independent regressions

vi= N b, ug~NO,1), i=1:n,
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where f! is the vector of factors corresponding to A!, and

; Yir — A" fir fori <r
Yy =

Yit fori>r
Under p(\') o ¢, we get
)\i|Y, S, )\u -~ N(S\Z, (Fi/Fi)—l) : S\z _ (Fi/Fi)—l(Filyi) ’

where F* and Y stack f; and y! along rows, respectively. Analogously, p(A%) o< 1{\* > 0}
yields

NY, 8N~ NN (FPF#)=YY N = (F iy~ (Fiyi) | truncated to Ry,

where F and Y stack f;; and y; — f’\" along rows, respectively.

Drawing from p(®|Y,S) Given that X, = I is diagonal, the transition equation is also a
set of independent regressions,

fu=a® ;+mi, me~NO1), i=1:7.
Under p(®.;) x ¢, we get
O,Y,S ~ N <<I> (XF’XF)‘1> . b, = (XPXT)IXPR
Drawing from p(S|Y, A, ®) The usual formulas for the Kalman filter and Carter and Kohn
(1994) simulation smoother simplify for the particular state space model above. Given an

rp x 1 vector z, let [z], = x1, contain the first r elements, [x] ;| all but the first  elements,
and [x] _, all but the last r elements. Similarly, given an rp x rp matrix X, let

_ [X]l,l [X]1,71 _ [X]fp,fp [X],m, _ [X]fp,. _
X—[[X]_M [X}_L_j [[X]p,_p [X]p,p] [ ] [[X].7_p X1,

where [X], , and [X]  arer xr, [X] ‘isrx (rp—p)and [X]  is (rp—p) xr.
Algorithm 4 (Kalman Filter for Factor Model).

1. Initialize soj0 = 0 and Pojo = 27:0 R'S,RY for h = 10, say.

2. Fort=1:T, given s;_1,—1 and P_y;_1,
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(a: Forecast sy:) compute s,y and Py as

g [St|t—1}1 = R1,~3t—1|t—1 ) [St|t—1]_1 = [St—l\t—l]_p )
o [Pua]y =RiPyaB 4% o [Pua] = [Pea]l,,
[Pt|t—1LM = [Pt—ut—ﬂ,p,. R, [Pt|t—1LL,1 = [Pt—l\t—1}7p77p

(b: Forecast y;:) compute yy—1 and Fyp—1 as

®  Yijt—1 = A [St|t—1}1 )
o Fu,=A [Pt|t71]11 AN+T.

(c: Update the forecast for s, given observation y,:) compute sy, and Py, as
® Syt = Stjt—1 T [Ptlt—l} .l AlFtﬁlA(yt — Yejt—1)

i Pt|t = Pt|t—1 - [Pt|t—1],J NED A [Pt\t—l}h .

tt—1
!
Thereby, Ry, = [®1,y,.... @], and A [Pyy], = ([a|t_1] B A') .

Algorithm 5 (Carter and Kohn (1994) Simulation Smoother for Factor Model).
1. Run the Kalman filter to get {sys, Seje—1, Pyt Pt|t,1}f:1.

2. Draw [sT], from N ([ST‘TL, [PT|T] 11)‘

3. Fort=T—1,...,0, given draw [3;’11]1 from N ([St+1|t+2:|1, |:Pt+1‘t+2i|11)7 draw [s}"],
from N ([St|t+1]1’ [Ptlt+1}11) with

_]_ m
o sy = sy + PRy (RLPy R +3) ([sih], — [seae )
o Py =Py — PyR). (RuPyR,. +%) " Ri.Py .

Analogous comments apply as for Algorithm 2.

D.4 Application Details
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Forecasts At Posterior Mode
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Figure A-1: Forecasting: Factor Model, Industrial Production Growth

Notes: The plot depicts the percentage difference between the out-of-sample Mean Squared Errors generated by the Dynamic
Factor Model and those generated by an unconditional mean forecast for different choices of p and r and for different types of

forecasts. All forecasts are obtained for industrial production growth.
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Figure A-2: Forecasting: NVAR(p, 1), Industrial Production Growth
Notes: The plot depicts the percentage difference between the out-of-sample Mean Squared Errors generated by the NVAR(p, 1)
and those generated by an unconditional mean forecast for different choices of p, types of shrinkage and hyperparameter selection
methods. All forecasts are obtained for industrial production growth using the posterior mode.
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