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Abstract

Many economic environments involve units linked by a network. I develop an econo-

metric framework that derives the dynamics of cross-sectional variables from the lagged

innovation transmission along bilateral links and that can accommodate general pat-

terns of how higher-order network effects accumulate over time. The proposed NVAR

rationalizes the Spatial Autoregression as the limit under an infinitely high frequency

of lagged network interactions. The factor-representation of the NVAR suggests that at

the cost of restricting factor dynamics, it naturally incorporates sparse factors as locally

important nodes in the network. The NVAR can be used to estimate dynamic network

effects. When the network is estimated as well, it also offers a dimensionality-reduction

technique for modeling high-dimensional processes. In a first application, I show that

sectoral output in a Real Business Cycle-economy with lagged input-output conversion

follows an NVAR. In turn, I estimate that the dynamic transmission of productivity

shocks along supply chains accounts for 61% of persistence in aggregate output growth,

leaving minor roles for autocorrelation in exogenous productivity processes. In a second

application, I forecast macroeconomic aggregates across OECD countries by estimat-

ing a network behind global business cycle dynamics. This reduces out-of-sample mean

squared errors for one-step ahead forecasts relative to a dynamic factor model by -12%

(quarterly real GDP growth) to -68% (monthly CPI inflation).
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1 Introduction

In economics, we often encounter a cross-section of units linked by a network of bilateral

ties, such as sectors connected through supply chains or individuals acquainted to each other.

A large theoretical and empirical literature documents that networks amplify idiosyncratic

shocks and generate comovement in cross-sectional variables at a given point in time.1

How network-induced comovements unfold over time, however, is less well understood.

The literature predominantly assumes contemporaneous network interactions (e.g. Bramoullé

et al. (2009); Acemoglu et al. (2012); Elliott et al. (2014)), embodied by the Spatial Autore-

gressive (SAR) model. This implies that an innovation contemporaneously transmits along

network connections of all orders. The resulting static framework is useful for “networked”

steady state comparisons. Among the few studies that consider lagged network interactions,

most posit that network effects materialize exactly one link per period (e.g. Long and Plosser

(1983); Golub and Jackson (2010); Elhorst (2012)). While useful for analyzing the quali-

tative implications of the laggedness of network interactions, this assumption is of limited

use for empirical work concerned with “networked” transition dynamics. Zhu et al. (2017)

generalize the lag length, but the generality of their empirical framework and its relation

to structurally motivated models of contemporaneous or single-lagged network interactions

remain unclear.

I construct an econometric framework that derives the dynamics of cross-sectional vari-

ables from the lagged innovation transmission along bilateral links between cross-sectional

units: the Network-VAR (NVAR). Like existing studies, I assume uni-directional transmis-

sion2 and time-invariant links. Unlike existing studies, the model can accommodate general

patterns on how innovations travel along links over time and, consequently, how network

connections of higher order accumulate as time progresses. To obtain this generality, I dis-

tinguish between the frequency of network interactions and the frequency of observation.

As the former diverges to infinity, the impulse-response to contemporaneous high-frequency

disturbances and the networked covariance among observations approach their counterparts

from the SAR model. The same impulse-response is also obtained when considering long-

term effects of permanent innovations. By taking a stance on the timing of network effects,

the NVAR goes beyond such steady state comparisons and characterizes transition dynamics.

In the NVAR, the interdependence of observations yit and yj,t−h arises as the interplay of

the temporal distance between periods t and t− h and the cross-sectional distance between

units i and j encoded by the network. Under a sparse network, this dependence is modeled

parsimoniously; the dynamic comovement among all series is rationalized by the dynamic

innovation transmission along a few bilateral links among units. This is akin to the assump-

tion that longer-term dynamics are driven by a set of shorter-term dynamics, upheld by the

1See work surveyed in Carvalho and Tahbaz-Salehi (2019); Bramoullé et al. (2016) and the following
literature review.

2i.e. either downstream or upstream, the distinction being relevant only for directed networks.
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general class of VARMA(p, q) models. The dynamics under the NVAR can be represented

by a Dynamic Factor Model (DFM) whereby the number of factors equals the rank of the

network adjacency matrix. At the cost of restricting their dynamics, the NVAR naturally

incorporates sparse factors as locally important nodes in the network.

The NVAR is useful in two distinct kinds of work with cross-sectional time series. By

conducting inference on the timing of innovation transmission along bilateral links, it can

be used to estimate dynamic network effects. Thereby, the network can be taken as given or

it can be inferred from dynamic cross-correlations in the data, possibly aided by shrinking

towards observed links. When both the network and effect-timing are estimated, the NVAR

is also applicable as a dimensionality-reduction technique for modeling high-dimensional

processes. Conditional on a network, inference on the timing of network effects boils down

to a linear regression with covariates that summarize lagged observations using bilateral links.

Joint inference is implemented by iterating on analytically available conditional estimators,

with Bayesian as well as frequentist interpretations. I illustrate each of these two model uses

with a respective application.

In the first application, I show that the NVAR approximates the process of sectoral output

in a Real Business Cycle (RBC) input-output economy with lagged input-output conversion

(IOC). In turn, I evaluate the potential of lagged IOC to generate endogenous business cycles,

as suggested theoretically by Long and Plosser (1983). I generalize their one period-lagged

IOC by assuming that inputs from the past p periods are imperfectly substitutable in the

production at any time t – a stand-in for a range of frictions that prevent just-in-time input-

sourcing – and by allowing the model frequency to differ from the observational frequency.

I characterize impulse-responses under a difference-stationary TFP process with persistent

aggregate and sectoral shocks. The analysis illustrates the differing implications of lagged

IOC and persistence in exogenous shocks for the dynamics of sectoral and aggregate output;

the former formalizes the idea that idiosyncratic changes in, say, energy production take

time to feed through the networked economy, while the latter merely prolongs the effects of

each round of transmission. Using input-output tables and monthly output growth across

23 manufacturing sectors in the US economy, I estimate their respective contributions to

persistence in aggregate output growth.

The results suggest that lagged IOC explain 61% of the autocorrelation in aggregate

output growth. With persistence in aggregate TFP, this number grows to 93%, leaving

little room for persistence in idiosyncratic sectoral TFP. My analysis reveals that shocks to

more central sectors not only affect aggregate output more strongly in the long run – as

established by Acemoglu et al. (2012) –, but they also tend to materialize more sluggishly.

This relationship, however, is far from clear-cut; for example, owing to its position at the

top of supply chains, a TFP shock in the primary metals sector materializes more slowly

than a shock to the food and beveredge sector, despite similar long-term effects.

In the second application, I investigate the merits of the NVAR as a dimensionality-
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reduction technique for forecasting high-dimensional (cross-sectional) processes. I consider

monthly industrial production growth, monthly CPI inflation and quarterly GDP growth

across OECD countries. Under a sparse network, the NVAR models the dynamics parsimo-

niously; the dynamic comovement among all series is rationalized by the dynamic innovation

transmission along a small set of bilateral links among countries. In line with that, I esti-

mate the network by shrinking links to zero using a Lasso-penalty. I also consider alternative

specifications that apply a Ridge-penalty and shrink to observable links.

In my setting, the NVAR reduces out-of-sample mean squared errors by 13%-68% relative

to the ex-post best-performing DFM. This corroborates my equivalence result: the NVAR

better forecasts these series, whose cross-country dynamics seem to be driven by many micro

links rather than a few influential countries. This corresponds to a setting with numerous

sparse factors and differing sets of non-zero loadings across units or, equivalently, a sparse,

yet high-rank network adjacency matrix.

Contribution There is a large econometric literature on spatial and network-interactions

(Manski, 1993; Kelejian and Prucha, 2010; Anselin, 2003; Lee, 2007; Bramoullé et al., 2009;

Shalizi and Thomas, 2011; Kuersteiner and Prucha, 2020; de Paula et al., 2024). It is

concerned with identifying spatial/peer-effects and accounting for heterogeneity in cross-

sectional and panel data-regressions.3 It predominantly assumes contemporaneous network

interactions, as exemplified by the canonical SAR model. Among the few studies that con-

sider lagged interactions (Elhorst, 2012; Knight et al., 2016), Zhu et al. (2017) cast them in

an an explicit time series model, generalizing the lag length and discussing stationarity and

large T -inference. I characterize Granger causality in their environment as the cross-sectional

innovation transmission along network connections of different order, formalizing the idea

that network effects materialize dynamically over time. In turn, I generalize this mapping

between network connections and dynamics, which allows me to derive the SAR model as the

limit of an underlying process driven by high-frequency lagged network interactions.4 Like

Pinkse et al. (2002); Lam and Souza (2020); Qu et al. (2021); de Paula et al. (2024) do in

the static environment, I discuss inference on the network itself – not only the effect-timing

–, which institutes the NVAR as a dimensionality-reduction technique – not only a tool for

estimating dynamic network effects – and motivates my equivalence result to factor models.

Many studies incorporate networks in time series analyses. Following Diebold and Yılmaz

(2009, 2014), some researchers interpret quantities of a given time series model – typically

a VAR – using network analysis (Billio et al., 2012; Anufriev and Panchenko, 2015; Chen

et al., 2025). Other studies restrict time series models using networks (Carvalho and West,

2007; Chudik and Pesaran, 2011; Davis et al., 2016; Ahelegbey et al., 2016; Zhu et al., 2017;

3A separate strand devises methods for dyadic data, i.e. the case when edges rather than nodes in the
network are observed (Graham, 2020).

4Barigozzi et al. (2025); Maung (2022); Armillotta and Fokianos (2023) extend Zhu et al. (2017) along
different dimensions than I do.
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Barigozzi and Brownlees, 2018; Billio et al., 2019; Caporin et al., 2021; Martin et al., 2025).5

Among them, the Global VAR (GVAR) (Pesaran et al., 2004; Chudik and Pesaran, 2014)

restricts static and dynamic interdependencies across units in a panel-VAR using exogenous

network-weights – e.g. bilateral trade –, enabling the estimation of many interconnected

VAR models under a weak exogeneity assumption.6 The NVAR also belongs to this second

category; it restricts innovations in a (cross-sectional) VAR to transmit along bilateral links

among variables (units), which leads to rich patterns of multi-step causality as in Dufour

and Renault (1998). In contrast to the GVAR and most “networked” time series approaches

above, I focus on a single variable per cross-sectional unit and a single type of connections

among them, and I entertain the assumption that innovations transmit along bilateral links.

This allows me to characterize a range of theoretical properties – including the relation to

static SAR models and DFMs –, to structurally motivate the NVAR with an RBC production

economy, and to efficiently conduct inference by relying on analytical conditional estimators.

When the network is estimated parsimoniously, the NVAR also addresses the literature

on dimensionality-reduction methods for time-series modeling. By reducing the number

of parameters and applying shrinkage priors, it leverages both approaches available for ad-

dressing the large parameter problem in the Wold representation (Geweke, 1984). Compared

to standard shrinkage methods (Litterman, 1986; Tibshirani, 1996), it applies shrinkage to

links – which in turn summarize the information in predictors at all lags – rather than to

predictors themselves. Compared to reduced rank regression (Velu et al., 1986) or factor

models (Geweke, 1977; Stock and Watson, 2002), it finds the linear combination to summa-

rize the information in predictors by relying on network connections of different order and,

ultimately, on bilateral links among units. While many of the network-restricted time series

approaches mentioned above appear to have a reduced-rank representation – consider the

GVAR’s construction of weighted averages of other countries’ variables –, the simple setup of

the NVAR allows me to characterize this representation explicitly. Owing to the equivalence

result that compares the NVAR to the DFM – corroborated by their relative performance

forecasting the three processes I consider –, the NVAR contributes to the long-standing lit-

erature on sparse factors (Boivin and Ng, 2006; Onatski, 2012; Bai and Ng, 2019; Fan et al.,

2022; Anatolyev and Mikusheva, 2022; Freyaldenhoven, 2025). Interestingly, in my applica-

tion, a sparse network is preferred to a dense one, suggesting the presence of sparse rather

than weak factors and running counter to the results of Giannone et al. (2021).

With the other application of the NVAR, I contribute to the series of efforts to mi-

crofound aggregate dynamics using production networks (see Horvath (1998, 2000); Dupor

(1999); Shea (2002); Carvalho (2010); Foerster et al. (2011); Acemoglu et al. (2012); di Gio-

vanni et al. (2014) and survey of Carvalho and Tahbaz-Salehi (2019)). These studies rely

5Holly and Petrella (2012); Dahlhaus et al. (2021); De Graeve and Schneider (2023); Chodorow-Reich
et al. (2025) exploit networks for shock-identification in VARs. Bykhovskaya (2023) models the temporal
evolution of a weighted network, which belongs to the realm of dyadic regressions (Graham, 2020) and
(dynamic) network-formation rather than -effects.

6See Canova and Ciccarelli (2013) for an overview of panel-VAR approaches.
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on contemporaneous IOC – mirroring the prevalence of contemporaneous interactions in

econometrics and in the related study of spatial economies (Desmet and Parro, 2025) – and

show that the production network greatly contributes to aggregate volatility. A notable ex-

ception is Long and Plosser (1983), who show that lagged IOC endogenizes business cycles

– i.e. persistence in aggregates –, without relying on autocorrelation in exogenous shocks,

non-rational expectations, or other frictions. Their analysis points to a more prominent role

for production networks than as mere amplification devices of existing dynamics; it formal-

izes (qualitatively) the notion that sectoral shocks take time to feed through the economy,

an idea well-accepted in the trade literature (Alessandria et al., 2010; Liu and Tsyvinski,

2024; Antràs and Tubdenov, 2025). Carvalho and Reischer (2021) characterize persistence

in the Long and Plosser (1983)-economy and show that its implied evolution due to observed

changes in the US input-output network accounts well for empirical measures of the changing

persistence of aggregate output growth. Their analysis suggests that the endogenization of

business cycles through lagged IOC is not only theoretically attractive, but has empirical

merit as well. I quantify the empirical salience of Long and Plosser (1983)’s hypothesis by

taking an RBC economy with general lags in IOC to the data. While lagged IOC leads

to the same steady state as under contemporaneous IOC, it decomposes the long-term re-

sponses to granular TFP shocks, with distinct transition dynamics from those generated by

autocorrelated TFP processes. By conducting inference on the timing of IOC along with

the autocorrelations and variance of exogenous TFP processes, I quantify the contribution

of lagged IOC to the entire autocorrelation function of aggregate output growth, supple-

menting and extending earlier decompositions of aggregate volatility (Foerster et al., 2011;

di Giovanni et al., 2014; De Graeve and Schneider, 2023).

Outline The rest of this paper is structured as follows. The model and its properties are

discussed in Section 2. Section 3 treats inference. In Section 4, I study how input-output

connections affect output dynamics in the US economy. In Section 5, I illustrate the merits

of the NVAR as a dimensionality-reduction technique. Section 6 concludes.

2 Dynamics via Lagged Network Effects: Theory

After providing some basic background on networks in Section 2.1, I present the NVAR and

its main properties in Section 2.2, and I discuss further properties in Section 2.3. Details

and proofs are in Section A. The discussion of inference is deferred to Section 3.

2.1 Bilateral Connections in Networks

A network is represented by an n × n adjacency matrix A with elements aij. I consider a

directed, weighted and possibly signed network; aij ∈ [−1, 1] shows the sign and strength of
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the link from unit i to unit j, with aij ̸= aji possibly. If aij = 0, I say unit i is not connected

to unit j. Self-links are permitted: aii ̸= 0. The set of bilateral links {aij}i,j=1:n give rise to

a myriad of higher-order (hyper-dyadic) links among units, referred to as walks.7

Definition 1 (Walk). A walk from i to j of length K ≥ 2 is

au1,u2,...,uK+1
≡

K∏
k=1

auk,uk+1
, u1 = i , u2 = j .

A walk is a product of bilateral links that lead from unit i to unit j over intermediary

units. It is non-zero if all of these units are sequentially connected. Simple matrix algebra

reveals that [AK ]ij contains the sum of walks from i to j of length K. I refer to this quantity

as the Kth-order connection from i to j. Consider the following example:

A =

0 0 .8

.7 0 .2

0 .9 0

 , A2 =

 0 .72 0

0 .18 .56

.63 0 .18

 , A3 =

.50 0 .14

.13 .50 .04

0 .16 .50

 .

Even though unit 3 is not directly connected to unit 1 (a31 = 0), there exists a second-order

connection via unit 2 (a32a21 ̸= 0). In a production network, unit 1 could be a supplier to

unit 2, who in turn is a supplier to unit 3.

2.2 Lagged Innovation Transmission via Bilateral Links

Consider a stationary cross-sectional time series yt = (y1t, ..., ynt)
′ with mean zero. Under

an NVAR, the dynamics of yt are driven by the lagged transmission of innovations uit along

bilateral links aij among cross-sectional units i, j = 1 : n. Throughout, I assume that links

are fixed over time and that transmission is uni-directional: the direct link from i to j, aij,

transmits innovations from j to i. Innovations ut may be cross-sectionally correlated.

2.2.1 Single Lag in Innovation Transmission: NVAR(1,1)

Consider a VAR(1) with an autoregressive matrix proportional to the adjacency matrix A:

yt = αAyt−1 + ut , (1)

for α ∈ R. Under this process, the one step-ahead expectation of yit is proportional to

the weighted sum of one period-lagged values of yjt for all units j to which i is directly

linked: Et−1[yit] = α
∑n

j=1 aijyj,t−1. For example, in the RBC input-output economy of

Long and Plosser (1983), the expected output in sector i tomorrow is a weighted average

7Whenever convenient to simplify notation, I write a : b for the set of integers {a, a+ 1, ..., b}, a ≤ b.
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of the production in its supplier-sectors j today. In Golub and Jackson (2010), individual

i’s expected opinion tomorrow is a weighted average of their friends’ opinions today. For

reasons clarified below, I dub this process NVAR(1,1).

Under Eq. (1), dynamics of yt at horizon h ≥ 1 are driven by hth-order network connec-

tions. More precisely, assuming α ̸= 0, yj Granger-causes yi at horizon h iff there exists an

hth-order connection from i to j:8

GCh
ij ≡

∂yi,t+h

∂yjt
=

∂yi,t+h

∂ujt

= [αhAh]ij , h ≥ 1 .

Fig. 1 illustrates these Granger-causality dynamics – also referred to as Generalized

Impulse-Response Functions (GIRFs)9 – for the network from Section 2.1 under α = 1. It

points to two insights. First, lagged network interactions generate persistence; even white

noise-innovations {ujt}nj=1 lead to persistent reactions of yt because each ujt affects connected

units i ̸= j with a lag.10 This result is behind the endogenous business cycles in Long and

Plosser (1983)’s economy with lagged input-output conversion. Second, under this type of

persistence, network-connections affect not only the strength of impulse-responses, but also

their timing. For example, while unit 2 is directly linked to unit 1 and therefore experiences

the latter’s innovation with a lag of one period, unit 3 only has a second-order connection to

unit 1 and therefore reacts only after two periods. This result relates to Dufour and Renault

(1998), who point out that Granger-causality can take the form of chains.11 In the case

of a (cross-sectional) time series driven by lagged innovation transmission along bilateral

links, their insight emerges naturally and their generally non-trivial conditions for Granger-

(non)causality boil down to the presence or absence of network connections of relevant order

between the relevant variables (units). As I show in the following, this holds even under a

more general transmission-timing than considered in Eq. (1).

While the process in Eq. (1) reveals useful theoretical insights in both macro- (Long

and Plosser, 1983) and microeconomics (Golub and Jackson, 2010), it is too restrictive for

most empirical work. It assumes that innovations transmit at the speed of one link per

period and that transmission materializes completely within a single period. This implies,

for instance, that in response to news gathered by a friend of a friend, j, an individual

i adjusts their opinion in two periods, not earlier, not later. Similarly, an innovation to

a sector j’s output affects the output of other sectors i located two positions downstream

(“customers of customers”) in exactly two periods. In either case, earlier responses are ruled

8In other words, given all other variables ykt for k ̸= j, yjt is useful in forecasting yi,t+h iff there exists
an hth-order connection from i to j.

9The GIRF is “generalized” because it disregards shock identification, but considers the propagation of
reduced form errors ut over future time periods t+ h, h ≥ 1.

10Furthermore, each individual yjt reacts persistently to its own white noise-innovation ujt as long as there
is a cycle in the network, i.e. a walk from j to j. Notably, this can hold even without a self-link – ajj = 0.

11Specifically, even if a series xt does not Granger-cause a series yt at horizon 1, under the presence of a
third series zt, xt might Granger-cause yt at higher horizons as the causality could run from xt to zt to yt.



This Version: 2026-01-23 8

Figure 1: Example of Generalized Impulse-Responses under an NVAR(1, 1)

Notes: Panel (i, j) shows GCh
ij = [αhAh]ij under α = 1. Note that GC0

ij = 1 if i = j and zero otherwise, i.e. by definition, the
contemporaneous responses to all but a series’ own innovation are zero.

out altogether, and later adjustments only occur if i has a third- or higher-order connection

to j. In the following, I generalize the timing of lagged network effects by extending the

simple process above along two dimensions.

2.2.2 Multiple Lags in Innovation Transmission: NVAR(p, 1)

Let the cross-sectional time series yt evolve according to a VAR(p), where each autoregressive

matrix is proportional to the same network adjacency matrix A:

yt = α1Ayt−1 + ...+ αpAyt−p + ut , (2)

with α = (α1, ..., αp)
′ ∈ Rp. I dub this process NVAR(p, 1). It simplifies the process presented

in Zhu et al. (2017) by not distinguishing self- and cross-links, by abstracting from restrictions

on the rows of A, and by disregarding the intercept and covariates. These simplifications

prove useful for characterizing a range of proprties in this section, for conducting inference

in Section 3, and for taking a macroeconomic model of lagged input-output conversion to

the data in Section 4.

Compared to Eq. (1), under the NVAR(p, 1) with p > 1, dynamics at horizon h are

affected by lower-order connections:

Proposition 1 (Granger-Causality in NVAR(p, 1)).

Let yt evolve as in Eq. (2). Then, Granger-causality from yj to yi at horizon h is a linear

combination of connections from i to j of order k ∈ {k, k + 1, ..., h}, where k = ceil(h/p).12
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Under αl > 0 ∀ l and aij ≥ 0, Proposition 1 implies that yj Granger-causes yi at horizon

h iff there exists a connection from i to j of at least one order k ∈ {k, k+1, ..., h}. The proof
of Proposition 1 in Section A.1 establishes that the GIRF is of the form

∂yi,t+h

∂uj,t

= chk(α)
[
Ak
]
ij
+ ...+ chh(α)

[
Ah
]
ij

. (3)

Each coefficient chk for k = k : h is a polynomial of {αl}l=1:p and shows the importance of

connection-order k for the impulse-response at horizon h. If i has a first- and no higher-

order connections to j, then ∂yi,t+h/∂uj,t = αhaij for h = 1 : p and zero otherwise. Hence,

the NVAR(p, 1) specifies that dynamics are driven by the transmission of innovations along

direct links lagged over p periods. α determines how the transmission is spread out over

these p periods and, consequently, how transmission along higher-order connections accrues

as time progresses. Note that the transmission is assumed to be the same for all unit pairs

(i, j) and invariant over time.

2.2.3 Multiple Rounds of Innovation Transmission: NVAR(p, q)

To further generalize the timing of innovation transmission, suppose that we observe ỹτ ∼
NVAR(p, 1) every q ∈ N periods; let the observed series yt evolve according to the state

space system

ỹτ = α1Aỹτ−1 + ...+ αpAỹτ−p + ũτ , (4)

yτ/q = ỹτ if τ/q ∈ N .

I dub this process NVAR(p, q). q indicates the relation between the frequency of network

interactions, at which ỹτ evolves, and the frequency at which data {yt}t=1:T is observed. If

q = 1, the two coincide and, trivially, yt and ỹτ are the same NVAR(p, 1) process. Instead,

if q > 1, then network interactions occur at higher frequency than data is observed. For

example, under yearly observations, q = 4 implies quarterly network interactions. As a

result, multiple rounds of transmission occur in a single observational period and dynamics

at horizon h are affected by higher-order connections, k > h:

Proposition 2 (Granger-Causality in NVAR(p, q)).

Let yt evolve as in Eq. (4) for some q ∈ N. Then, Granger-causality from ỹj to ỹi at horizon

h is a linear combination of connections from i to j of order k ∈ {k, k + 1, ..., hq}, where
k = ceil(hq/p).13

12ceil(x) rounds x ∈ Q up to the next integer.
13Assuming again αl > 0 ∀ l and aij ≥ 0, Proposition 2 implies that ỹj Granger-causes ỹi at horizon h iff

there exists a connection from i to j of at least one order k ∈ {k, k + 1, ..., hq}.
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Eq. (4) implicitly assumes that ỹτ is a stock variable; every q periods we observe a

snapshot of it. To accommodate a flow variable ỹτ , we can model yt as

ỹτ = α1Aỹτ−1 + ...+ αpAỹτ−p + ũτ , (5)

yτ/q = (ỹτ + ...+ ỹτ−q+1)/q if τ/q ∈ N ,

with similar properties as under Eq. (4).14

By restricting the NVAR(p, q) in Eq. (4), we can accommodate more intricate relations

between the frequencies of network interactions and observation; for any q ∈ Q++, we can

write q = q1q2 with q2, q
−1
1 ∈ N, and we can model yt as an NVAR(p∗, q2) with p∗ = p/q1 ∈ N

and with restricted parameters {αl}l=1:p∗ to comply with the stated interpretations of p and

q. For example, under monthly observations, q = 4/3 signifies that network interactions

occur (roughly) every three weeks. This amounts to observing every 4 periods a snapshot

of a weekly process that depends on its value in the past p 3-week-periods, i.e. on its value

three weeks ago, six weeks ago, and so forth, until p∗ = 3p weeks ago. Section A.4 elaborates.

2.3 Further Properties of the NVAR

Stationarity In the NVAR, the interdependence of yit and yj,t−h is an interplay of the

cross-sectional distance between units i and j – encoded by the network – and the temporal

distance between periods t and t−h. Correspondingly, Corollary 1 characterizes stationarity

in terms of eigenvalues of the network adjacency matrix A and roots of an AR process shaped

by the timing of innovation transmission along a single link, α.15 Under p > 1, this simplifies

checking for stationarity, especially for large n. Note that the second statement requires the

AR(p) process (1−ϕ1L−...−ϕpL
p)xt = vt with ϕl = αlλi to be stationary for each eigenvalue

λi of A, though AR-coefficients are typically required to be real-valued.

Corollary 1 (NVAR(p, q): Stationarity).

Let yt evolve as in Eq. (4) or Eq. (5) for some q ∈ N. Let ũτ ∼ WN(0,Σ), suppose αl ̸= 0

for at least one l, and define a =
∑p

l=1 |αl|.

If |λi| < 1/a for all eigenvalues λi of A, then yt is weakly stationary. Under αl ≥ 0 ∀ l,

the implication is both-sided. Moreover, yt is weakly stationary iff for all eigenvalues λi of

A, the p× p matrix below has all eigenvalues inside the unit circle:[
α1λi ... αpλi

Ip−1 0

]
.

14See Section A.4 and Section 2.3. Analogous calculations apply if yt = ỹτ + ...+ ỹτ−q+1.
15Corollary 1 follows from Propositions 8, 9 and 13. Intuitively, the conditions ensure that

limk→∞ c(α, k)Ak = 0, for any polynomial in α of order k, c(α, k). By Proposition 1, this ensures that
the effects of disturbances vanish for higher horizons.



This Version: 2026-01-23 11

Relation to SAR Model In all of economics, the literature overwhelmingly considers

contemporaneous network interactions as embodied by the Spatial Autoregressive (SAR)

model. If x = (x1, ..., xn)
′ is the cross-sectional variable of interest, it posits

x = Ax+ v . (6)

Provided that |λi| < 1 for all eigenvalues λi of A, we can write x = (I − A)−1v = (A +

A2 + A3 + ...)v. Hence, the implicit assumption is that connections of all order materialize

in a single period. In line with that, Corollary 2 establishes that the response of xi to an

innovation vj in the SAR model from Eq. (6) is equal to the long-run response of yit to a

persistent innovation ũjτ in the NVAR(p, q) from Eq. (4) or Eq. (5).16

Corollary 2 (NVAR(p, q): Long-Term Response to Persistent WN-Innovations).

Let yt evolve as in Eq. (4) or Eq. (5) for some q ∈ N, and let x = aAx+ v with a =
∑p

l=1 αl.

Assume yt is weakly stationary. Then,

lim
H→∞

[
∂yt+H

∂ũtq

+
∂yt+H

∂ũtq+1

+ ...+
∂yt+H

∂ũ(t+H)q

]
=

∂x

∂v
= (I − aA)−1 .

Both responses are given by the Leontief inverse (I−aA)−1, which is a sufficient statistic

for the long-term cross-sectional comovement. By taking a stance on the timing and fre-

quency of network interactions, the NVAR shows how any such long-term effects materialize

over time; it goes beyond steady state comparisons and characterizes transitional dynamics.17

α temporally decomposes the spatial autoregressive parameter a.

The long-run is defined in terms of the frequency of network interactions. To justify

the use of the SAR at the expense of the NVAR, then, we need this frequency to be high

enough and the data frequency to be low enough. Corollary 3 formalizes this idea; if we

define the observed process yt as the sum of an underlying process ỹτ evolving at the higher

frequency of network interactions, then, as this frequency diverges to infinity, yt’s response

to a high-frequency innovation that occurs within observational period t converges to the

response of xi to an innovation vj in the SAR model from Eq. (6).18

Corollary 3 (NVAR(p, q): Contemporaneous Response to Within-Period Innovation).

Let yt evolve as in Eq. (5) for some q ∈ N\{1}, and consider ytq. Then, for g ∈ 0 : (q − 1),

lim
g→∞

q
∂yt

∂ũτ−g

= (I − aA)−1 .

16Corollary 2 follows from Propositions 5 and 11.
17Note the correspondence between the timing of transitional dynamics and the timing of responses to

temporary innovations; as for any VAR, the long-term response to a permanent innovation is equal to the
cumulative response to temporary innovations.

18Corollary 3 follows from Propositions 5 and 12, applied for ρj = 0.
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Difference to Exogenous Persistence Instead of relying on lagged network interac-

tions, one can also introduce transitional dynamics to the SAR model from Eq. (6) through

autocorrelated innovations v. This approach is predominant in macroeconomic studies of

input-output-economies; under fairly standard assumptions (see e.g. Carvalho and Tahbaz-

Salehi (2019)), sectoral production and prices evolve according to Eq. (6), whereby v is

Total Factor Productivity (TFP), which – across all areas of macroeconomics – is typically

assumed to follow an autoregressive process.19

Lagged network interactions and autocorrelated innovations lead to different kinds of

dynamics. As first illustrated in Fig. 1 for the NVAR(1,1), and as discussed throughout this

section for the general NVAR(p, q), lagged network interactions relate impulse-responses to

network-connections of different order, whereby the precise mapping is determined by α and

q. As a consequence, how strongly yi reacts to an impulse to yj depends on the strength

of network-connections from i to j of relevant order, and how fast it reacts depends on

how many lower- as opposed to higher-order connections the two units share. For instance,

in the environment of Golub and Jackson (2010) this implies that an individual adjusts

their opinion faster after news shared by closer than more distant friends. Similarly, in the

context of Long and Plosser (1983) it means that a sector contracts its production faster

after a negative productivity shock to more immediate suppliers than to ones located further

upstream.

In contrast, autocorrelated innovations lead to exponentially decaying impulse-responses.

This shape is preserved when they are coupled with contemporaneous network interactions;

if xt = aAxt + vt and (1− ρjL)vjt = ϵjt, then

∂xi,t+h

∂ϵjt
=
[
(I − aA)−1

]
ij
ρhj . (7)

The strength of connections from i to j merely scales the exponentially decaying impulse-

response; network connections merely amplify exogenous dynamics.

When the two sources of dynamics are combined, their qualitatively distinct contributions

remain. Consider an NVAR(p, 1), and let (1− ρjL)ujt = εjt. Then, using Proposition 1,

∂yi,t+h

∂εjt
=

h∑
l=0

∂yi,t+h

∂uj,t+h−l

∂uj,t+h−l

∂εj,t

=
h∑

l=0

∂yi,t+l

∂uj,t

∂uj,t+h−l

∂εj,t
=

h∑
l=0

{
clk(l)(α)

[
Ak(l)

]
ij
+ ...+ cll(α)

[
Al
]
ij

}
ρh−l
j , (8)

for k(l) = ceil(l/p). Under ρj = 0, this expression simplifies to Eq. (3). Under p = 1

and α1 = 1, it simplifies to
∑h

l=0

[
Ah
]
ij
ρh−l
j . While α determines the timing of innovation

19It can be split into an idiosyncratic and an aggregate component; see Section 4.
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α = (.8, .2)′, ρj = .6

Transmission of Single Innovation
(ch

k(h)
: chh for h = 1 : 6)

IRFij to Persistent Shock,
(Ak)ij = 1 {k = 1}

IRFij to Persistent Shock,
(Ak)ij = 1 {k = 2}

α = (.2, .8)′, ρj = .6

Figure 2: Composition of Impulse-Responses under NVAR(2, 1) with AR(1)-Innovations

Notes: The top row refers to α = (.8, .2)′, the bottom row to α = (.2, .8)′. The left panel depicts the coefficients ch
k(h)

: chh from

Eq. (3) for h = 1 : 6, which illustrate how an innovation transmits along connection-orders (y-axis) over time (x-axis; horizons).
The dashed lines bound the relevant connection-orders in an NVAR(2, 1): h ∈ k(h) : h. The middle panel plots the IRF from
Eq. (8) under ρj = .6 for a pair (i, j) with only a first-order connection. The right panel repeats this for a pair with only a
second-order connection.

transmission along direct links and, therefore, also the timing of transmission along all higher-

order connections from i to j, ρj determines the persistence of yi’s response after each round

of transmission.

Fig. 2 illustrates for an NVAR(2, 1) and ρj = .6, once under α = (.8, .2)′ (top row),

once under α = (.2, .8)′ (bottom row). The left panel depicts how connection-orders ac-

cumulate over horizons for these α, while the middle and right panels show the resulting

impulse-responses for two sectors that share only a first- or only a second-order connection,

respectively. Under α = (.8, .2)′, the innovation travels faster through the network than

under α = (.2, .8)′; in the former case, the transmission along a direct link (darkest blue dots

and bars) is strongest after one period, in the latter after two periods. Consequently, under

α = (.8, .2)′, the transmission along second-order connections (lighter blue dots and bars)

is strongest in the second period, under α = (.2, .8)′ in the fourth period. The exogenous

persistence ensures that the fraction ρj of any transmission at horizon h is carried over to

horizon h+ 1, a fraction ρ2j to horizon h+ 2, etc. (ever lighter gray bars).

Even under autocorrelated innovations, lagged and contemporaneous network interac-

tions yield the same long-run responses. This is shown by Corollary 4.20

20Corollary 4 follows from Propositions 6 and 11. In contrast to Corollary 2, it considers the long-run rather
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Corollary 4 (NVAR(p, q): Long-Term Response to Persistent AR(1)-Innovations).

Let yt evolve as in Eq. (4) or Eq. (5) for some q ∈ N, and let xt = aAxt + vt, with a =∑p
l=1 αl. Assume yt and xt are weakly stationary, and assume (1−ρjL)ujt = εjt ∼ WN and

(1− ρjL)vjt = ϵjt ∼ WN , with ρj ∈ [0, 1). Then,

lim
H→∞

[
∂yi,t+H

∂ũj,tq

+ ...+
∂yi,t+H

∂ũj,(t+H)q

]
= lim

H→∞

[
∂xi,t+H

∂ϵj,t
+ ...+

∂xi,t+H

∂ϵj,t+H

]
=

[(I − aA)−1]ij
1− ρj

.

Networked Contemporaneous Correlation Trivially, contemporaneous network in-

teractions lead to contemporaneous correlation among {xi}i=1:n; under Eq. (6), we have

V[x] = V[(I − A)−1v]. In this case, Cov(xi, xj) reflects the bilateral exposure between i

and j and their mutual exposure to third units, whereby exposure is determined by network

connections of all order.21 De Graeve and Schneider (2023) exploit this insight for shock

identification in the context of a production economy.

Networked contemporaneous correlation is obtained as soon as the network interaction-

frequency exceeds the frequency of observation, even under finite values of the former. In

an NVAR(p, q), we can define the “observable innovations” ut = yt − E[yt|Ft−1], where

Ft−1 = {ỹ(t−1)q, ỹ(t−1)q−1, ...}. Under q = 1, ut = ũτ inherits the variance of the exogenous

innovations ũτ . Under q > 1, ut is a linear combination of past ũτ , and its variance reflects

units’ bilateral exposure and mutual exposure to third units, whereby exposure is determined

by network connections of orders k ∈ 1 : (q − 1), along which the underlying innovations

ũτ travel within a single period of observation. For example, if yt evolves as in Eq. (5) for

q = 2, we have ut = ũτ + (I + α1A)ũτ−1. If ũτ ∼ WN(0,Σ) with Σ = diag(σ2
1, ..., σ

2
n), then

Cov(uit, ujt) = 2σ2
i 1 {i = j}+ α1aijσ

2
j + α1ajiσ

2
i + α2

1

n∑
k=1

aikajkσ
2
k .

Thus, uit and ujt comove based on aij, aji and {aikajk}k=1:n. Propositions 14 and 15 state

V[ut] for the NVAR(p, q) processes in Eqs. (4) and (5) and general q > 1.

Corollary 3 above establishes that an SAR for x is obtained in the limit when writing x

as the sum of an underlying process driven by lagged network interactions that evolves at an

ever higher frequency. In addition, by Proposition 3, the Normality-assumption v ∼ N(0,Σ)

in the SAR model can be justified by temporally independent high-frequency innovations

than contemporaneous response of x, since the implicit assumption in the SAR model with autocorrelated
innovations is that they evolve at observational frequency.

21We have V[x] = V[(I +A+A2 + ...)v], provided that |λi| < 1 for all eigenvalues λi of A. Assuming that
V[v] = Σ = diag(σ2

1 , ..., σ
2
n), we get

Cov(xi, xj) = σ2
i 1 {i = j}+ σ2

j

∞∑
h=1

[
Ah
]
ij
+ σ2

i

∞∑
h=1

[
Ah
]
ji
+

n∑
o=1

σ2
o

∞∑
hi=1

∞∑
hj=1

[
Ahi

]
io

[
Ahj

]
jo

.
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ũτ with V[ũτ ] = q−1Σ. Concretely, for the NVAR(p, q) from Eq. (5) and for a =
∑p

l=1 αl,

Proposition 3 shows that
√
qut

d→ N (0,V[(I − aA)−1ũτ ]) as q → ∞, provided the high-

frequency innovations ũτ are strictly stationary.

Proposition 3 (NVAR(p, q): Limit Distribution of “Observable Innovations”).

Let yt evolve as in Eq. (5) for some q ∈ N\{1}. Assume yt is weakly stationary and

ũτ ∼ WN(0,Σ) is temporally independent. Define ut ≡ yt − E[yt|Ft−1], where Ft−1 =

{ỹτ−q, ỹτ−q−1, ...}. Also, let a =
∑p

l=1 αl. Then, as q → ∞,

√
qut

d→ N(0,Γ∗ΣΓ
′
∗) , Γ∗ = (I − aA)−1 .

Relation to Dynamic Factor Model The NVAR is a restricted VAR in which inno-

vations transmit across series along constant, bilateral links (in one direction). Relative to

a VAR(p) with p > 1, the NVAR(p, 1) induces parsimony; e.g. for each yit, the n links

{aij}j=1:n in Ai· summarize the information in the np-dimensional set {yj,t−l}j=1:n,l=1:p:

yit = x′
itα + uit and yt = Xtα + ut , (9)

where xit =
∑n

j=1 aijyj,t−l is the ith row ofXt = [Ayt−1, ..., Ayt−l]. If, in addition, the network

A is sparse – as is the case across a wide range of applications –, then the NVAR rationalizes

the dynamic comovement among all {yit}i=1:n by the dynamic innovation transmission along

few bilateral links among i = 1 : n.

The Dynamic Factor Model (DFM) also reduces dimensionality by summarizing a large

set of predictors by a few linear combinations. Proposition 4 shows that the NVAR(p, 1) can

be written as a DFM, while a DFM with restricted factor dynamics can be written as an

NVAR(p, 1) in the limit as n → ∞.22 Together with Eq. (9) above, it suggests that, at the

cost of restricting factor dynamics, the NVAR allows the linear combinations of predictors

to vary more flexibly across units, to the point that it naturally acommodates sparse factors

as (linear combinations of) locally important units in the network.23

Proposition 4 (NVAR(p, 1)-Factor Model Equivalence Result).

Let yt evolve as in Eq. (2). Let r be the rank of A. Then, we can write

yt = Λft + ut , with ft ∈ Rr .

22The second part of Proposition 4 restricts ft ∈ Rr to follow an NVAR(p, 1). This is less restrictive than
it may seem; for p = 1, it requires ft ∼ V AR(p), while under r = 1 it requires ft ∼ AR(p). Also, note that,
as usual, the factor representation is not unique, and we can re-scale A and ϕ to ensure aij ∈ [−1, 1].

23The DFM constructs {Et−1[yit]}ni=1 as different (Λi·) linear combinations of the same factors ft, which
in turn are linear combinations of observables. In contrast, the NVAR constructs {Et−1[yit]}ni=1 as the same
(α) linear combination of different covariates xit, which in turn are linear combinations of observables.
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Conversely, let yt = Λft + ξt, with ft ∈ Rr. Assume ft = Φ1ft−1 + ...+Φpft−p + ηt, with

Φl = ϕlΦ for each l = 1 : p and some Φ. Then, as n → ∞, we can write

yt = ϕ1Ayt−1 + ...+ ϕpAyt−p + ut , ut = Ληt + ξt ,

where A = ΛΦ(WΛ)−1W and W is any r × n matrix with distinct rows.

3 Dynamics via Lagged Network Effects: Inference

The NVAR can be used to estimate dynamic (lagged) network effects, as determined by

α, the time profile of network effects. When the network A is estimated as well, it can

also be used as a dimensionality-reduction technique useful for forecasting (cross-sectional)

processes. In Section 3.1, I discuss inference on α, treating A as given. In Section 3.2, I

discuss joint inference on (α,A).Details are in Section B.

3.1 Timing of Network Effects

NVAR(p, 1) The NVAR(p, 1) from Eq. (2) can be written as the linear regression in

Eq. (9). Defining Σ = V[ut], we obtain the Least Squares (LS) estimator for α:

α̂|Σ =

[
T∑
t=1

X ′
tΣ

−1Xt

]−1 [ T∑
t=1

X ′
tΣ

−1yt

]
. (10)

As usual, under ut ∼ N(0,Σ), it is also the (conditional) Maximum Likelihood (ML) esti-

mator and the posterior-mean and -mode under a Uniform prior for α|Σ. Under Σ = I, it

yields the OLS estimator, which takes a “pooled” form:

α̂OLS =

[
T∑
t=1

X ′
tXt

]−1 [ T∑
t=1

X ′
tyt

]
=

[
n∑

i=1

T∑
t=1

xitx
′
it

]−1 [ n∑
i=1

T∑
t=1

xityit

]
.

Section B.1 establishes consistency and asymptotic Normality of α̂OLS under large T , large

n and large (n, T ) asymptotics. The derivations under large n assume that the observed net-

work adjacency matrixAn converges to some limitA∗ so that, for example, 1
n

∑n
i=1 (An,i·yt−l)

′ uit
p→

E
[
(A∗,i·yt−l)

′ uit

]
.

We can estimate Σ standardly by Σ̂|α = 1
T

∑T
t=1 utu

′
t. The joint ML estimator (α̂, Σ̂) is

obtained by iterating on α̂|Σ and Σ̂|α until convergence (see Meng and Rubin (1993)).

NVAR(p, q) In case of an NVAR(p, q), as defined in Eq. (4), an estimator for α can be

obtained by data augmentation.24 However, point identification is not guaranteed. For

24The discussion holds likewise for the NVAR(p, q) from Eq. (5).
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example, under q = 2 and p = 1, the observed process follows

yt = α2
1A

2yt−1 + ut , with ut = ũ2t + α1Aũ2t−1 ,

which suggests that α1 is identified only up to sign. The identification problem is akin to

estimating an AR(p) observed every q periods, discussed in Palm and Nijman (1984).25 It

is due to the fact that the mapping between the parameters α in the high-frequency process

ỹτ and the parameters in the observed process yt is generally not bijective. For a general

AR(p) and q = 2, the vector (α1, α3, ...) is identified (jointly) up to sign (see Section B.1).

In the application in Section 4, the restrictions on α imposed by economic theory render

α point-identified, as suggested by a unique posterior mode under Uniform priors. In other

cases, one could follow the suggestion of Palm and Nijman (1984) and inform the estimation

of α with a prior. This is facilitated by the clear interpretation of {αl}l=1:p; it is the GIRF

for units i and j that only share a first-order connection (see Section 2.2) and indicates how

innovations transmit along a single link over time.

Conditioning on Σ̃, the posterior p(α|Y1:T ) can be obtained using the Gibbs sampler of

Carter and Kohn (1994). Treating the unobserved data in Ỹ1:Tτ as parameters, it iteratively

draws from p(Ỹ1:Tτ |α, Y1:T ) and p(α|Ỹ1:Tτ ) to obtain a sample from p(α, Ỹ1:Tτ |Y1:T ).
26 Under

a Uniform prior for α, the resulting posterior mode of α converges to the ML estimator

obtained using the Expectation-Maximization (EM) algorithm. To estimate Σ̃ as well, an

additional iteration step is added to the Gibbs sampler. Using a uniform prior, we get an

Inverse-Wishart conditional posterior for Σ|Ỹ1:Tτ , α with mode 1
Tτ

∑Tτ

τ=1 ũτ ũ
′
τ .

3.2 Joint Inference: Network & Effect-Timing

When interest lies in dynamic network effects, joint estimation of (α,A) is useful because

network data may be difficult to collect or it may appear restrictive to condition the analysis

on available network data. In addition, estimating (α,A) jointly enables us to use the NVAR

as a dimensionality-reduction technique.

NVAR(p, 1) The NVAR(p, 1) from Eq. (2) can also be written as the linear regression

yt = Azt + ut , or Y = ZA′ + U , (11)

25It is also similar to estimating continuous time models using discrete time data (see e.g. Phillips (1973)).
26The particular state space model where in some periods τ no data is observed implies that in these

periods the updating-step of the Kalman filter is skipped and the updated distribution of states equals their
predicted distribution. See Section B.1, and see Schorfheide and Song (2015) for a discussion of the analogous
case of a mixed-frequency VAR.
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where zt =
∑p

l=1 αlyt−l =
[
yt−1, yt−2, ..., yt−p

]
α, and the T × n matrices Y , Z and U stack

yt, zt and ut along rows, respectively. To simplifty notation, I suppress the dependence of zt
on α and that of Xt on A.

To render (α,A) jointly identified, I normalize α1 = 1, with appropriate redefinitions

of α as well as yt, zt and Xt. Relative to the alternative of restricting the norm of α,

this normalization facilitates analytical calculations and asymptotic analysis, but it requires

α1 ̸= 0 in the true data generating process.27

Suppose data on a network B with elements bij is available. Under independent priors

aij ∼ N(bij, λ
−1
a ), we obtain a matrix-variate Normal conditional posterior for A:

A | (Y, α,Σ, B, λa) ∼ MN
(
Ā′,Σ, ŪA

)
, ŪA = [Z ′Z + λaΣ]

−1
, Ā = ŪA [Z ′Y + λaB

′Σ] .

Its mean and mode, Ā′, is the conditional optimizer for A under a LS objective function

with a Ridge-penalty:

Ā′ = argmin
A

T∑
t=1

(yt − Azt)
′ Σ−1 (yt − Azt) + λa

n∑
i,j=1

(aij − bij)
2 . (12)

As λa → ∞, we impose A = B. As λa → 0, we ignore B and infer A from the data alone. No

domain restrictions on A are imposed because any parameter value (α,A) can be rescaled

to yield aij ∈ [−1, 1] ∀ i, j, so that A can be interpreted as a network.28

Under a Laplace prior, the conditional posterior of A and its mode – the Lasso estimator

– is available analytically when imposing aij ≥ 0 and shrinking to bij = 0. We get

A | (Y, α,Σ, λa) ∼ MN
(
Ā′,Σ, ŪA

)
, ŪA = (Z ′Z)

−1
, Ā = ŪA [Z ′Y − λaιι

′Σ] ,

truncated to Rn2

+ . Drawing from this distribution or computing its mode is computationally

feasible only for a diagonal Σ, which renders the distribution of each row i of A independent

across i. Under Σ = I, we get

Ai· | (Y, α,Σ = I, λa) ∼ N
(
(Ā′)i,·, ŪA

)
, truncated to Rn

+ .

A draw from this distribution is obtained using Gibbs sampling by iteratively drawing from

the Normal conditional densities aij | (Ai,−j, Y, α,Σ = I, λa) for j = 1 : n. Its mode is

computed by iterating on the latters’ modes.29

27In case aij ≥ 0 is restricted, it requires α1 > 0.
28To enforce aij ∈ [0, 1] even under low λa, aij ≥ 0 must be imposed. This leads to the high-dimensional

Normal posterior being truncated to Rn2

+ and considerably complicates the analysis, as both computing the
mode and drawing from this distribution is computationally intensive.

29Taken together, these two results mean that we can draw from the distribution of A | (Y, α,Σ, λa) or
compute its mode by iterating on each column of A given all other columns.
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Given Σ and λa, the joint posterior p(α,A|Y ) is obtained by Gibbs sampling, iteratively

drawing from the conditional posteriors p(A|Y, α,B,Σ, λa) and p(α|Y,A,Σ). To estimate Σ

as well, an additional step is added to draw from p(Σ|α,A, Y ). Under uniform priors for

α and Σ, the posterior mode of p(α,A,Σ|Y ) is equal to the GLS estimator (α̂, Â, Σ̂) of the

objective function in Eq. (12), obtained by iterating until convergence on the three respective

conditional estimators. Fixing Σ = I, we obtain the OLS estimator of (α,A), for which

consistency and asymptotic Normality under T → ∞ are established in Section B.2. The

choice of λa for predictive purposes as well as the possibility to construct B as a combination

of multiple link-types is discussed in Section 5.

NVAR(p, q) As in the estimation of α|A, if the network interaction frequency is higher

than the observation frequency, joint inference on (α,A) can be conducted by relying on data

augmentation. As before, identification is not guaranteed. In fact, relative to the estimation

of α|A the problem is likely worsened, even if A may be tightly shrunk to a known (or

sparsely parameterized) network B. However, the estimation of (α,A) in the application in

Section 5 of this paper is judged based on forecasting performance, not its ability to deliver

point identification.

4 Business Cycles by Lagged Input-Output Conversion

Long and Plosser (1983) show that time lags between the production of goods and their sub-

sequent use as intermediaries for producing other goods can generate endogenous business

cycles. In this application, I empirically quantify the importance of their proposed channel.

I generalize their RBC economy with one-period lagged IOC by assuming that firms’ pro-

duction requires inputs produced in the past p periods. This leads to sectoral output growth

evolving at some model-frequency as an NVAR(p, 1), which translates into an NVAR(p, q)

for some q ∈ N at my monthly frequency of observation. Thereby, A is the input-output

matrix, ut contains sectoral productivity processes, while {αl}l=1:p show how input-sourcing

is spread out over the p periods. By estimating α, q and the persistence in ut, I use the

NVAR to quantify the extent to which business cycles in this framework are due to lagged

IOC as opposed to persistence in exogenous productivity processes.

After theoretically motivating the analysis in Section 4.1, I discuss the setup, data and

estimation in Section 4.2. Section 4.3 presents the results. Details are in Section C.

4.1 Theory

The following analysis is based on Carvalho and Tahbaz-Salehi (2019) – who discuss a static

economy – and the Appendix to Acemoglu et al. (2016). Derivations are in Section C.1.



This Version: 2026-01-23 20

Assume there are n sectors, in each of which a representative firm produces a differenti-

ated good i by combining labor services liτ and goods produced by other sectors j, {xijτ}nj=1,

using a constant returns to scale (CRS) Cobb-Douglas production function. Firms maximize

profits, taking prices as given. The profits of firm i in period τ are

Πiτ = piτyiτ − wτ liτ −
n∑

j=1

pjτx
ij
τ , with yiτ = ziτ l

bi
iτ

n∏
j=1

x
aij
ijτ ,

where bi > 0, aij ≥ 0 and bi +
∑n

j=1 aij = 1. ziτ denotes Total Factor Productivity (TFP)

in sector i, {piτ}ni=1 are the prices of the n different goods, and wτ is the price of labor. xijτ

is the amount of good j used in the production at time τ . As discussed below, it can differ

from the amount of good j purchased in period τ , xij
τ .

In this environment, prices are entirely determined by supply. To characterize output, I

assume the presence of a representative household who supplies one unit of labor inelastically

and exhibits log-preferences over the n goods:

max
{ciτ}ni=1

n∑
i=1

γi ln(ciτ/γi) , s.t.
n∑

i=1

piτciτ = wτ ,

where
∑n

i=1 γi = 1. The first-order condition (FOC) yields ciτ = γi
wτ

piτ
.30 This result holds

even if households have access to a storage technology, as market clearing under represen-

tative households in a closed economy implies that households spend their whole period τ

income, wτ , on consumption.

Different assumptions on the timing of IOC lead to different dynamics of sectoral prices

and output in this economy. Typically, it is assumed that inputs are converted into outputs

in the same period when they are purchased, i.e. xijτ = xij
τ . Dropping time subscripts in this

static environment, define ỹ = ln(y), y = (y1, ..., yn) and analogously for z̃. In equilibrium,

sectoral output satisfies

ỹ = ky + Aỹ + z̃ , (13)

where ky is a vector of constants, and aij = pjx
ij/(piyi) is value of good j purchases by sector

i as a fraction of the value of sector i’s output. In this environment, while the network A

amplifies idiosyncratic TFP shocks and therefore affects the variance of ỹ, any autocorrelation

in ỹ is inherited from that in z̃ (see e.g. Carvalho (2010); Acemoglu et al. (2012)).

To analyze dynamics under lagged IOC, I assume perfect foresight.31 If, as in Long and

Plosser (1983), it takes one period to convert purchased inputs into output, then xijτ = xij
τ−1

30Hence, γi is the share of good i in households’ expenditures.
31As discussed in Fan et al. (2023), this assumption is standard for modeling dynamic spatial economies,

which are closely related to dynamic network economies.
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and sectoral output approximately follows an NVAR(1, 1):

ỹτ = ky1
τ + Aỹτ−1 + z̃τ ,

where the time variation in ky1
τ is due to time variation in the numéraire wτ . So long as

β < 1, in steady state, prices are higher and output is lower than in the economy with

contemporaneous IOC. Also, the meaning of aij = β−1pjx
ij/(piyi) changes slightly. These

differences vanish as β → 1. More importantly, while the former, static economy is always

in steady state, the economy with one period-lagged IOC features transition dynamics; af-

ter a disturbance to z̃τ , ỹτ only asymptotically converges to steady state.32 It is due to

these transition dynamics that this framework can generate endogenous business cycles, i.e.

autocorrelation in ỹτ even in absence of autocorrelation in z̃τ .

To take the economy with lagged IOC to the data, I generalize the lag length by as-

suming that firms require inputs produced in the past p periods for production. For ease of

exposition, let p = 2. Let xijτ aggregate quantities of input j purchased at different periods

in the past using a Constant Elasticity of Substitution-aggregator:

xijτ =
[
α1(x

ij
τ,τ−1)

r + α2(x
ij
τ,τ−2)

r
]1/r

, α1, α2 ≥ 0 , α1 + α2 = 1 ,

where xij
τ,τ−h denotes the use of good j purchased at time τ − h in the production of good

i at time τ .33 This shortcut stands for frictions like delivery costs and -lags and storage

capacity constraints (Khan and Thomas, 2007; Alessandria et al., 2010; Liu and Tsyvinski,

2024; Antràs and Tubdenov, 2025).34 In the Cobb-Douglas case r → 0, sectoral output

approximately follows an NVAR(2,1):

ỹτ = ky2
τ + α1Aỹτ−1 + α2Aỹτ−2 + z̃τ , (14)

where once again ky2
τ varies over time only to the extent that the numéraire wτ changes

in value. Under a more general elasticity of substitution r ∈ [0, 1),35 the analogous result

is obtained by log-linearizing around the steady state (see Section C.1). This specification

nests the one period-lagged economy, which is obtained under α2 = 0. Relative to that case,

α2 > 0 increases prices and decreases output in steady state, provided that β < 1. Also, we

have aij = [βα1 + β2α2]
−1

(pjx
ij)/(piyi). As β → 1, the links aij retain their interpretation as

the output shares of different inputs j in the production of good i. The parameters (α1, α2)

show the shares of an input j purchased at different periods in the past in the overall usage

32Relatedly, as discussed in Section 2.2, the response of ỹ(τ) to a change in z̃(τ) in the static economy cor-
responds to the long-term response of ỹτ to a permanent change in z̃τ in this dynamic economy (disregarding
the slightly changed meaning of aij).

33This means that a good perishes after two periods (with regard to its suitability as an input in produc-
tion). Therefore, the amount of good j purchased at time τ can be used in production at periods τ + 1 and
τ + 2: xij

τ = xij
τ+1,τ + xij

τ+2,τ .
34As in the Long and Plosser (1983)-economy above, the presumption is that storage is done by the buyer.
35This notably excludes complementarity (r < 0) and perfect substitutability (r = 1).
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of input j in the production of good i. Their homogeneity means that the time profile of

input-sourcing is assumed to be constant over time and across input-output pairs (i, j). The

restrictions α1, α2 ≥ 0, α1 + α2 = 1 and
∑n

j=1 aij < 1 ∀ i imply that ỹτ is stationary as long

as z̃τ is.36

The theory above does not restrict the process of (log) sectoral TFP z̃iτ . In general, it

may display secular growth and persistent shocks of both aggregate and idioyncratic nature.

Consider a difference-stationary specification with aggregate and idiosyncratic TFP processes

eaτ and eiτ evolving as AR(1) processes as in Foerster et al. (2011):

∆z̃iτ = γi + δie
a
τ + eiτ ,

(1 − ρaL)e
a
τ = εaτ ∼ WN and (1 − ρiL)eiτ = εiτ ∼ WN . Under contemporaneous IOC

(Eq. (13)), this leads to

∆ỹτ = (I − A)−1 [γ + δeaτ + eτ ] . (15)

We obtain IRFs ∂∆ỹi,τ+h/∂εj,τ and ∂∆ỹi,τ+h/∂ε
a
τ akin to those in Eq. (7) in Section 2.3.

This points to two sources of persistence in output growth: persistence in the aggregate

TFP process eaτ and persistence in idiosyncratic TFP processes {eiτ}ni=1. The role of input-

output links is limited to amplification; the response of output growth in sector i to a TFP

shock in sector j is scaled by element (i, j) of the Leontief-inverse (I −A)−1, as in Carvalho

(2010, Fig. 7 and 8). By summing up connections of all order from i to j, the latter shows

the importance of sector j in sector i’s supply chain.

Lagged IOC can be an additional source of persistence. Under Eq. (14), we get

∆ỹτ ≈ γ + α1A∆ỹτ−1 + α2A∆ỹτ−2 + δeaτ + eτ , (16)

which leads to IRFs ∂∆ỹi,τ+h/∂εj,τ and ∂∆ỹi,τ+h/∂ε
a
τ akin to those in Eq. (8) in Section 2.3.

As discussed in Section 2.3, lagged IOC and TFP shocks’ autocorrelation imply distinct

dynamics; α relates the timing at which a sector’s output is first impacted by a TFP shock

in another sector and the strength of the ensuing response to network connections of different

order, whereas ρa and {ρj}j=1:n induce an exponentially decaying response after every round

of networked transmission.

Under a difference-stationary specification for log sectoral TFP z̃τ , TFP shocks have

temporary effects on output growth, but persistent effects on output levels. By Corollary 4,

the long-term response of (log) output to a TFP shock – equal to the cumulative response of

output growth – is the same under contemporaneous and lagged IOC, in line with the fact

36Berman and Plemmons (1994, ch. 2) show that for an element-wise nonnegative matrix with row sums
strictly smaller than 1, the absolute value of the largest eigenvalue is strictly less than 1. Stationarity then
follows by Corollary 1.
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that any TFP level yields the same steady state in both economies (disregarding differences

in A between the two).

To take the processes in Eq. (15) and Eq. (16) to the data, one has to take a stance on

what a period in the theoretical models above signifies. Let {∆yt}Tt=1 be observed output

growth. As it is a flow variable, the model-frequency must be either equal to the observational

frequency or an integer-multiple thereof (see Section 2.2.3):

∆yτ/q = ∆ỹτ + ...+∆ỹτ−q+1 for τ/q = 1, ..., T , (17)

and for q ∈ N. Other things equal, under a higher q the economy approaches faster the new

steady state level of output following a TFP shock. Relatedly, under lagged IOC, it also

means that the IRFs at any single horizon increasingly depend on higher-order connections,

and it leads to network-induced cross-sectional correlation in innovations at observational

frequency, whereas for q = 1 the correlation is entirely due to aggregate TFP shocks.37 As the

meaning of q depends on the frequency of observation, its choice is discussed in Section 4.2.

4.2 Application-Setup, Data & Estimation

I quantify the relative contributions of these two (three) drivers of aggregate persistence as

seen through the lens of the theory of real business cycles with contemporaneous and lagged

IOC. To do so, I estimate the state space models characterized by Eqs. (15) and (17) and

Eqs. (16) and (17), respectively, based on industrial production growth across US manu-

facturing sectors, while calibrating the links aij using input-output data. The analysis first

seeks to determine whether there is a role for lagged IOC at all by comparing the data fit of

specifications with lagged IOC to that with contemporaneous IOC based on model selection

criteria. Presuming that one of the former is preferred, the role of lagged IOC can be quan-

tified by computing the change in the autocorrelation implied by the estimated model with

lagged IOC when the persistence in TFP shocks is set to zero.

I compute log differences of monthly industrial production (IP) indices across 23 manu-

facturing and mining sectors in the US economy provided by the Federal Reserve Board.The

indices are available from January 2005 through August 2022. To eliminate seasonal pat-

terns, I regress each series on month-dummies, take the residuals and add back the mean.

To construct A, I use annual data on input-output (IO) matrices provided by the Bureau of

Economic Analysis (BEA). I take the input-output matrix for 2010. Following the theory in

Section 4.1, links aij are calibrated as

aij =
salesj−→i

salesi
,

37See Section C.1 as well as Section 2.2.3 for more detailed discussions of these points. In the limit as
q → ∞, the long-term response referenced in Proposition 6 – a function of all connection-orders – materializes
after a single observational period.
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where salesj−→i is the total value of goods and services purchased by sector i from sector j

as determined by the corresponding entry in the BEA’s “use” table.38 The value of aij shows

how many dollars worth of output of sector j sector i needs to purchase in order to produce

one dollar’s worth of its own output. I abstract from the differences in the calibration of

aij between contemporaneous and lagged IOC, which renders the analysis valid as β → 1.

More importantly, the calibration assumes that firms’ input shares reported for the course

of a year are equal to those at higher frequency intervals. Details on the matching of IP and

IO data is provided in Section C.2.

For the specification with lagged IOC, I consider p = {1, 2, 3, 4, 5, 6} and q ∈ {1, 2, 3}, im-

plying network interaction frequencies of a month, two weeks and 10 days. Under contempo-

raneous IOC, I take q = 1, as it already refers to the limit case of an infinitely high frequency

of network interactions. In both cases, I consider Normal AR(1) processes for idiosyncratic

and aggregate TFP: (1 − ρaL)e
a
τ = εaτ ∼ N(0, σ2

a) and (1 − ρiL)eiτ = εiτ ∼ N(0, σ2
i ). To

separately identify both TFP processes, I normalize σ2
a = 1 and δ1 = 1, re-defining δ. To

accommodate the restrictions αl ≥ 0 ∀ l and
∑p

l=1 αl = 1, I drop αp from α and impose the

domain restrictions αl ∈ [0, 1] for l = 1 : p − 1 and
∑p−1

l=1 αl ≤ 1. Under lagged IOC, this

yields p−1+4n unknown parameters: θ = (α′, γ′, δ′, ρa, ρ
′, σ2′)′, where ρ and σ2 stack {ρi}ni=1

and {σ2
i }ni=1, respectively. Under contemporaneous IOC, α is dropped from θ, leading to 4n

parameters.39

The inference from Section 3 is not applicable because of the autocorrelation and factor

structure of TFP processes and due to the restrictions on α under lagged IOC. The likelihood

of both models can be evaluated with a Kalman filter, as stated in Section C.3. I consider

Bayesian inference on θ under uniform priors on the respective domains.40 As a result,

the posterior mode equals the Maximum Likelihood estimator. The posterior is obtained

numerically using a Sequential Monte Carlo algorithm, which – as a by-product – estimates

the marginal likelihood and therefore enables model selection.

4.3 Results

Table 1 reports the Marginal Data Density (MDD) for different specifications of the model

with lagged IOC. For comparison, its value under contemporaneous IOC is -11,590. This

number is beaten by all but a few lagged IOC specifications with q = 1. The most preferred

specification features q = 2 and p = 5, i.e. bi-weekly network interactions where innovations

travel 2.5 months along single input-output links. The subsequent analysis is based on this

preferred specification.

38This is in line with the literature. See Acemoglu et al. (2016) for example. Carvalho and Tahbaz-Salehi
(2019) discuss the IO data in more detail.

39With n = 116 sectors and T = 211 − p periods available for estimation, this yields an observations-to-
parameters ratio of 52.5 under p = 1 and 50.7 under p = 6.

40Specifically, ρi, ρa ∈ [0, 1) and σ2
i , σ

2
a ∈ R++ for i = 1 : n, δ ∈ Rn and α ∈ [0, 1]p−1 ∩ {α : ||α||1 ≤ 1}.
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Table 1: Model Selection: Log MDD

p

1 2 3 4 5 6

1 -12058 -11975 -11680 -11466 -11450 -11729

q 2 -11223 -11509 -11317 -11180 -11109 -11353

3 -11257 -11174 -11406 -11185 -11204 -11219

Notes: The table shows the log Marginal Data Density (MDD) across model specifications. The
values for q (from top to bottom) refer to network interaction frequencies of a month, two weeks
and 10 days, respectively. The log MDD under contemporaneous IOC is -11590.

Fig. 3 illustrates the composition of impulse responses, analogously as Fig. 2 does for

two units that share only a first- or second-order connection. The top-left panel shows the

estimated temporal propagation of TFP shocks along supply chain linkages of different order.

Remarkably, within the first two months after the shock, the impact is mostly limited to

direct customer-sectors. After that, the shock spreads somewhat more quickly to higher-

order connections.

The top-right panel shows the strength of network connections of different order from

the sector “Fabricated Metal Products” to the sectors “Mining (except oil and gas)” and

“Chemical Products”, respectively. Firms producing fabricated metals depend on chemical

products directly as well as indirectly in their supply chain. In contrast, they rely on mining

products only indirectly, though this higher-order dependence is of a similar magnitude.

The lower panels of Fig. 3 illustrate the resulting impulse responses to a respective one

standard deviation idiosyncratic TFP shock to Chemical Products and Mining. As a result

of its stronger direct reliance on chemicals, the response of the growth in the production of

fabricated metals to a TFP shock in the chemical sector materializes much faster than does

the response to a TFP shock in mining. Yet, the two are of a similar magnitue at their

peaks.

The responses refer to percentage point increases in sectoral output growth. To interpret

the magnitudes, recall that the data is in monthly frequency and that the (persistent) re-

sponse of the level of sectoral output is obtained by summing up the illustrated (transitory)

response of output growth. Expectedly, the magnitudes are rather small, as they refer to

responses of sectoral output to idioyncratic TFP shocks in a single other sector.

Larger responses are obtained when considering aggregate TFP shocks. On top of their

direct effect on the output growth of all sectors, the latter have an indirect effect, as the

supply chain network amplifies initial effects. Fig. 4 shows the respones of output growth in

the sectors “Oil and Gas Extraction” and “Machinery” to a one standard deviation shock to

aggregate TFP. The oil and gas extraction sector is positioned rather at the top of supply
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(a) Single Shock Network Transmission (b) “Fabricated Metal Products”: Links

(c) IRF: Fabr. Metal Products to Mining (d) IRF: Fabr. Metal Products to Chemical Products

Figure 3: Impulse Responses to Idiosyncratic TFP Shocks
Notes: The top left panel depicts the coefficients ch

k(h)
: chh from Eq. (8) for h = 1 : 6, illustrating how a single shock transmits

along network connection-orders (y-axis) over time (x-axis; horizons). The dashed lines show the bounds on which connection-
orders can matter in an NVAR(2, 1): h ∈ k(h) : h. The top right panel shows the supply chain connections of different order
from “Fabricated Metal Products” to “Mining (except oil and gas)” and “Chemical Products”, and the bottom panels show
the resulting IRFs to a TFP shock of one standard deviation.

chains. Due to its weak reliance on other sectors as suppliers, its response to aggregate TFP

shocks is only weakly amplified by supply chain connections. In contrast, after a similar

initial response, the machinery sector experiences a hump-shaped response due to second-

order transmission operating via its supplier-sectors. The relevant network-quantity for these

IRFs is a sector’s weighted reliance on all other sectors as suppliers, with weights given by

their exposures to the aggregate TFP shock, δ (see Eq. (16)).

A similar reasoning explains the differing IRFs of aggregate output growth to sectoral

TFP shocks. Fig. 5 shows these responses to TFP shocks in “Mining (except oil and gas)”

and “Chemical Products”, respectively. As the chemical sector sits on the top of supply

chains, it leads to a much more persistent increase in aggregate industrial production than

does an increase in the TFP in the mining industry. The relevant network-quantity for these

IRFs is all sectors’ weighted reliance on the particular sector in question as a supplier, with

weights given by sectors’ contribution to aggregate output growth.
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IRFs to Aggregate TFP Shocks

Oil and Gas Extraction Machinery

Figure 4: Impulse Responses to Aggregate TFP Shocks
Notes: The left panel shows the impulse-response of the production growth in “Oil and Gas Extraction” to a one standard
deviation aggregate TFP shock. The right panel does the same for the sector “Machinery”.

Existing studies use a static framework of contemporaneous input-output conversion to

show that the effects of sectoral TFP shocks on aggregate output are stronger for sectors with

more central positions in the supply chain network. By Proposition 6, the present analysis

leads to the same long-run effects, but it sheds light on the transition dynamics. The left

panel of Fig. 6 shows the time profiles of the response of aggregate industrial production to

TFP shocks in different sectors. It illustrates that, due to different positions in the supply

chain network, under lagged IOC sectors differ not only in terms of the strength of their

impact on aggregate output, but also by its timing. Sectors at the bottom of supply chains,

such as the food and beverage sector, have a much more immediate effect on aggregate

output than sectors that act as important suppliers to other sectors in the economy.

Although stronger effects tend to take more time to realize, there is no clear relationship

between the strength and timing of the response of aggregate output to sectoral TFP shocks.

This is illustrated by the right panel of Fig. 6. For example, a TFP shock in the food and

beverage sector has a similar long-term effect on aggregate output as a shock to primary

metals, yet the latter materializes much more sluggishly. One month after the TFP shock

in the primary metals sector, a similar fraction of the long-term effect on aggregate output

has materialized as in the case of a TFP shock to mining support activities, yet the latter

are estimated to lead to a stronger long-term effect.

The autocorrelation of aggregate output growth at the posterior mean is estimated to be

0.389. In a hypothetical environment without persistence in exogenous shocks, this number

drops to 0.237. As a result, lagged IOC can account for about two thirds of aggregate per-

sistence. Together with persistence in the aggregate TFP process, this number increases to

0.365. In contrast, if only persistence in sectoral TFP processes is added, the autocorrelation
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IRFs of Aggregate Output Growth

IRF to Mining IRF to Chemical Products

Figure 5: Impulse Responses of Aggregate Output Growth
Notes: The left panel shows the impulse-response of the aggregate growth in industrial production to a one standard deviation
shock to the TFP in “Mining (except oil and gas)”. The right panel does the same for the response to a TFP shock in “Chemical
Products”.

increases only to 0.276. Overall, these results indicate that lagged IOC and a single, persis-

tent aggregate TFP process can account wel for business cycles in this RBC environment.

5 Dimensionality-Reduction by Innovation Transmis-
sion through Parsimonious Networks

In Section 4, a process yt is driven by an observed network, and we quantify how net-

work effects materialize over time. In this section, I forecast a rather high-dimensional

series yt and, for the most part, I assume that no network data is available. When (α,A)

are jointly estimated and the estimation of A is regularized, the NVAR becomes useful as

a dimensionality-reduction technique. It rationalizes the dynamic comovement among all

{yit}i=1:n by the dynamic innovation transmission along a few bilateral links among units

i = 1 : n.

In Section 5.1, I discuss the potential of the NVAR to reduce dimensionality, building on

Section 3.2. Section 5.2 then sets up the application to forecast macroeconomic aggregates

across countries, and Section 5.3 presents the results. Details are in Section D.

5.1 NVAR-Estimation for Dimensionality-Reduction

Even for intermediate n, an unrestricted VAR(p) poorly forecasts yt ∈ Rn. Relative to it, un-

der p > 1, the NVAR(p, 1) reduces the number of parameters in the autoregressive matrices

from pn2 to n2 + p− 1, owing to the assumption that innovations transmit cross-sectionally
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Figure 6: Size and Timing of IRFs of Aggregate Output Growth
Notes: The left panel shows the time profile of the effect of sectoral TFP shocks on aggregate industrial production for a few
selected sectors. The right panel relates the strength of the effects to their timing. The shock sizes are equal to one standard
deviation of the respective sectoral TFP shock.

only via bilateral links; rather than freely relating yit to {yj,t−l}j=1:n,l=1:p, it uses the n links

{aij}i=1:n to compress this information to xi,t−l =
∑n

j=1 aijyj,t−l, and in turn the p − 1 free

parameters in α determine the importance of different lags of xit for the dynamics of yit.
41

If, in addition, A is estimated parsimoniously, then the NVAR leverages both approaches

available to address the large parameter problem in the Wold representation (Geweke, 1984):

it reduces the number of parameters and applies shrinkage priors (regularization). Regular-

ization of A is motivated by the sparseness of real world-networks across a wide range of

applications and by the fact that the dynamic comovement of two series yit and yjt can be

captured with higher-order connections between i and j without a direct link between them

(see Propositions 1 and 2).

Section 3.2 discussed the estimation of A under a Normal prior (L2-penalty) and under

an Exponential prior (L1-penalty and restricting aij ≥ 0). In the following, these two

approaches are labeled NVAR-R and NVAR-L. The joint posterior of (α,A) is obtained by

iteratively drawing from the conditional posteriors of α|A and A|α, the joint posterior mode

– the Ridge-/Lasso-regularized LS-/ML-estimator – by iterating on the conditional posterior

modes.

When the NVAR-R and NVAR-L are applied for predictive purposes, selecting the hy-

perparameter λa – i.e. the degree of shrinkage – becomes particularly important. Following

Giannone et al. (2015), setting a hyperparameter to its marginal posterior mode (MPM)

under a Uniform hyperprior maximizes the marginal data density (MDD) and, hence, the

one-step ahead predictive ability. Under NVAR-R and NVAR-L, respectively, we obtain the

41Even though Et−1[yit] contains the same linear combinations of {yj,t−l}j=1:n at all lags l = 1 : p, dynamics
at higher horizons h are driven by different linear combinations, since higher-order network connections
accumulate over time (see Proposition 1).
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conditional posteriors

λa | (A,B) ∼ G

(
n2 + 2

2
,
tr [(A−B)′(A−B)]

2

)
and λa | A ∼ G

(
n2 + 1 , ι′Aι

)
.

We get the joint posterior of (α,A, λa) by augmenting the Gibbs sampler from Section 3.2

with a step to draw λa from this conditional posterior. In turn, we arrive at the marginal

posterior of λa by simply considering its posterior draws in isolation.

While well-grounded in theory, the approach of Giannone et al. (2015) is computationally

expensive in the present environment, as it requires obtaining the full posterior.42 For NVAR-

L, a heuristic approach is to maximize the Bayesian Information Criterion (BIC) suggested

by Zou et al. (2007) for other Lasso-applications. This involves counting the number of

non-zero elements in Â(λa). For NVAR-R, an analogous criterion is the conditional MDD

p(Y |λa, B, α,Σ), which is derived in Section D.1 and can be maximized when evaluated at

α̂ (and Σ̂).

5.2 Forecasting-Setup

To validate the NVAR’s merit as a dimensionality-reduction technique, I forecast a range

of macroeconomic time series across countries and compare its performance to that of the

Dynamic Factor Model (DFM) of Geweke and Zhou (1996):

yt = Λft + ut , ft = Φ1ft−1 + ...+ Φpft−p + ηt , (18)

where ut ∼ N(0, In), ηt ∼ N(0, Ir) and Λ1:r,· is lower-triangular with positive diagonal

elements. The equivalence result in Proposition 4 suggests that, relative to the DFM, the

NVAR restricts factor dynamics, but allows the linear combinations of predictors to vary

more flexibly across units and acommodates sparse factors as (linear combinations of) locally

important units in the network. Therefore, the NVAR is expected to capture cross-sectional

dynamics in finite samples better than the factor model in the presence of many sparse

factors or, equivalently, in case of a sparse, yet close-to-full-rank network adjacency matrix.

Intuitively, this is the case of dynamics driven by many bilateral links rather than a few

influential units. More generally, Proposition 4 suggests the NVAR could improve upon the

poor forecasting performance of factor models under a high dispersion of factor loadings

across series (see Boivin and Ng (2006)).43

42This is particularly disadvantageous if only the posterior mode estimator is of interest. Even if the full
posterior of (α,A) evaluated at the optimal λa is desired, however, it is a drawback, as it requires conducting
posterior sampling twice. The disadvantage disappears only if one is interested in the marginal posterior of
(α,A) under a Uniform prior for λa (model-averaging rather than -selection).

43This notably includes the case of sparse factors, i.e. loading-vectors with zero and non-zero entries. As
Boivin and Ng (2006) point out, selecting the number of factors separately for each series is a poor remedy:
series that depend on less dominant factors are still poorly forecasted, as including more estimated factors
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To investigate these hypotheses, I use the NVAR and DFM to forecast monthly industrial

production (IP) growth, monthly CPI inflation and quarterly real GDP growth across OECD-

member countries, -applicants and -partners.44 The series are obtained from the IMF’s

IFS database, and YoY growth rates are used. I limit attention to the pre-COVID periods

2001:M1 - 2019:M12 and 2001:Q1 - 2019:Q4, respectively, and I delete countries with missings

or more than two consecutive constants. This yields datasets with n = 42, n = 34 and n = 39

observations. The series are de-seasonalized by subtracting fitted values from a regression

on period-dummies, and the resulting series are standardized.

Comparison is based on mean squared errors (MSEs) at different forecasting horizons,

whereby the mean is taken over countries as well as forecasting origins. I consider expanding

windows with 24 and 16 origins, respectively, ranging from 2017:M12 to 2019:M11 and from

2015:Q4 to 2019:Q3. To reduce the computational burden, the models are fully estimated

only at the first origin, after which parameters are fixed and, if required, hidden states are

re-estimated by conditioning on these initially estimated parameters. At the first origin, we

have T = 203 and T = 60 observations, respectively.

I limit the analysis to point forecasts obtained under the posterior mode of (α,A) in the

NVAR-R and NVAR-L as presented in Section 3.2 – the Ridge-/Lasso-regularized ML-/LS-

estimator –, and the posterior mode of (Λ,Φ), Φ = [Φ1, ...,Φp]
′ under a Uniform prior in the

DFM – the ML-/LS-estimator (see Section D.3). For the DFM, I consider p = 1 : 4 lags and

r = 10 factors. In turn, I select the ex-post best-performing specification that minimizes

the cumulative MSE over the first three horizons, and I compare all NVAR specifications

against this benchmark. This renders the assessment of the NVAR’s suitability for forecasting

independent of methods to select the number of factors ex-ante. For the NVAR, I also

consider p = 1 : 4 lags, and I mostly focus on q = 1 – the case referred to by Proposition 4 .

In both NVAR models, I set Σ = I, and, unless otherwise stated, I shrink A to B = 0. The

degree of shrinkage, as embodied by λa, is chosen based on two methods. The first takes

the MPM and, therefore, maximizes the MDD exactly, while the second approximates this

choice by using grid-search to maximize the BIC (in case of the NVAR-L) or the conditional

MDD (for the NVAR-R).

5.3 Results

Fig. 7 illustrates the results for IP growth and NVARs with q = 1. The ex-post best

DFM features r = 4 factors and p = 1 lags. As shown by the black line, it reduces the

MSE of one-step ahead forecasts by 13% relative to forecasting the unconditonal mean of

zero. As expected, this improvement vanishes for higher horizons. The NVAR-R (blue

adds noise to the forecasts.
44As of August 2024, this includes 45 countries. On top of 34 OECD members, there are 8 applicants

(Argentina, Brazil, Bulgaria, Croatia, Indonesia, Peru, Romania and Thailand) and 3 partners (China, India,
South Africa).
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Figure 7: Forecasting: NVAR(p, 1) vs. Factor Model, Industrial Production Growth
Notes: The plot depicts the out-of-sample MSEs generated by the ex-post best-performing DFM, NVAR-R and NVAR-L, all
relative to those generated by an unconditional mean forecast. All forecasts refer to those obtained under the posterior mode.

lines) further reduces the MSE at the first horizon, amounting to -27% relative to the same

benchmark (-16% relative to the DFM), whereby the noticeable improvement relative to the

DFM persists for the first two horizons. Thereby, both methods to select λa yield similar

answers – λa,MPM = 160 (solid line) and λa,MDD = 141 (dashed line) – and indistinguishable

forecasting performances. They both lead to p = 2 as the ex-post best-performing model.

For NVAR-L (red lines), smaller values and differing lag-lengths are selected: λa,MPM = 31

with p = 1 (solid line) and λa,BIC = 8 with p = 3 (dashed line). Nevertheless, the forecasting

performances are again similar. For the first horizon, they yield MSE reductions of -42%

and -40% relative to the unconditional mean (-33% and -30% relative to the DFM). The

improvement is long-lasting, reverting to levels obtained under the DFM and NVAR-R only

for six-period ahead forecasts.45

The results in Fig. 7 are obtained using the respective posterior mode, i.e. frequentist

point estimator. As shown in Fig. A-1, the factor models yield similar performances even

for forecasts at the posterior mean or the posterior mean forecasts. Selecting the best DFM

using these alternative forecasting-types does not change any of the above numbers by more

than two percentage points. For NVAR-L, the normalization α1 = 1 is applied, whereas for

NVAR-R, ||α||1 = 1 is imposed.46 The computational time needed to obtain the posterior

modes of the DFM and the NVAR for a given λa are of a similar order of magnitude and

45The models’ performances under different different choices of p and r are shown in Fig. A-1 and Fig. A-2.
46Under the former normalization, NVAR-R yields poor performance, as the free parameters in α are

increased to extremely high values, while all elements in A are shrunk accordingly. This is likely because,
for highly correlated series with E[yty′t−1] ≈ E[yty′t−2], α−1 is weakly identified, as e.g. Ayt−1 + α2Ayt−2 ≈
(1 + α2)Ayt−1. This issue does not occur for NVAR-L, likely because it shrinks numerous elements of A all
the way to zero. The issue does not occur either when estimating the full posterior of NVAR-R or NVAR-L.
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CPI Inflation Real GDP Growth

Figure 8: Forecasting: NVAR(p, 1) vs. Factor Model, CPI Inflation & Real GDP Growth
Notes: The plot depicts the out-of-sample MSEs generated by the ex-post best-performing DFM, NVAR-R and NVAR-L, all
relative to those generated by an unconditional mean forecast. All forecasts refer to those obtained under the posterior mode.

amount to 5-10 seconds. However, this burden is considerably increased by the need to re-

compute the posterior mode for many different λa in the search for the value that maximizes

MDD or BIC and the need to compute the full posterior distribution in the search for the

MPM of λa.
47

Qualitatively, the same conclusions apply when forecasting monthly CPI inflation. The

left panel of Fig. 8 shows that, in this case, the DFM reduces the one-step ahead MSE by

54% relative to the unconditional mean forecast, with a noticeable improvement persisting

throughout the first six months. The NVAR-R improves slightly upon this, yielding -67%

and -64% (-27% and -22% relative to the DFM). The NVAR-L delivers again the best

performance: -86% and -85% (-68% relative to DFM).

When forecasting quarterly GDP growth, the conclusions change. The performance of

the best DFM (-30%) is beaten only slightly and only at the first horizon. The NVAR-

R models yield -37% and -35% (-10% and -7% relative to DFM), and the NVAR-L with

λa-selection according to BIC yields -38% (-12% relative to DFM). At longer horizons, the

NVAR-R yields a similar performance as the DFM, beating the unconditional mean by about

10-15%, while the reduction by the mentioned NVAR-L model reverts faster to zero. The

NVAR-L with λa selected by MPM yields -22% and thereby underperforms the DFM by

12%.

47For NVAR-R, this yields about 50-100s in the former case and about 10min in the latter case. These
times are doubled for NVAR-L.
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6 Conclusion

In this paper, I develop the Network-VAR (NVAR) – an econometric framework that ratio-

nalizes the dynamics of a cross-sectional variable by the dynamic innovation transmission

along bilateral links among cross-sectional units – and I consider two applications. First, I

estimate the contribution of lagged input-output conversion to business cycles through the

lens of an RBC economy, thereby providing a structural underpinning of the NVAR. Sec-

ond, I use the NVAR as a dimensionality-reduction technique for forecasting cross-country

macroeconomic aggregates.

More work is needed to explore the extent to which the NVAR is useful to address sparse

factor-issues and improve upon the forecasting performance of alternative dimensionality-

reduction techniques. Its application for forecasting very high-dimensional processes would

benefit from refinements of the crude shrinkage priors used in this paper.

Furthermore, rather than assuming time-invariant links, an important methodological

step forward would be to jointly study dynamic network effects and -formation. Rather than

assuming stationarity, an interesting avenue for further research would be to study networked

cointegration. Finally, the NVAR could be augmented to accommodate heterogeneous prop-

agation patterns across units or over time, which in the context of a production economy

amounts to endogenizing firms’ inventory management. I leave these directions for future

research.
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A NVAR: Theory

A.1 NVAR(p, 1): Granger-Causality/GIRFs

Proposition 1 (NVAR(p, 1): Granger-Causality).

Let yt evolve as in Eq. (2). Then, for k = ceil(h/p) and some coefficients {chk}k=k:h, we have

∂yi,t+h

∂uj,t

= chk
[
Ak
]
ij
+ ...+ chh

[
Ah
]
ij

.

Proof: Write yt in companion form as zt = Fzt−1 + et, where zt = (y′t, y
′
t−1, ..., y

′
t−p+1)

′ and

et = (u′
t, 0

′, ..., 0′)′ are np× 1 vectors, and the np× np matrix F is

F =


Φ1 ... Φp−1 Φp

In ... 0n 0n
...

. . .
...

0n ... In 0n

 .

We have
∂yt+h

∂yt
= [In, 0n×n(p−1)]F

h[In, 0n×n(p−1)]
′ = (F h)11 ,

where (F h)lm is the n × n matrix in position (l,m) of F h. I prove the following claim by

induction: (F h)1l has powers of A in the set ceil((h + l − 1)/p) : h. Note that the claim is

true for h = 1. Suppose it is true for h. For h+ 1 we have

F h+1 =

(F
h)11 ... (F h)1p
...

. . .
...

(F h)p1 ... (F h)pp



Φ1 ... Φp−1 Φp

In ... 0n 0n
...

. . .
...

0n ... In 0n


=

[
(F h)11Φ1 + (F h)12 (F h)11Φ2 + (F h)13 ... (F h)11Φp−1 + (F h)1p (F h)11Φp

...
...

. . .
...

...

]
.
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(Only the first row of blocks in F h+1 are relevant to the argument.) Consider m ∈ 1 : (p−1)

s.t h+m is a multiple of p. Then

ceil

(
h+ l − 1

p

)
=

{
h+m
p

for l = 1 : (m+ 1)
h+m
p

+ 1 for l = (m+ 2) : p
.

This means that for l = 1 : (m + 1), (F h)1l has powers of A in
(

h+m
p

)
: h, while for

l = (m + 2) : p it has powers in
(

h+m
p

+ 1
)

: h. Then, by the equation above, for l =

1 : m, (F h+1)1l has powers of A in
(

h+m
p

)
: (h + 1), while for l = 1 : m it has powers in(

h+m
p

+ 1
)
: (h+ 1). These sets are both equal to ceil

(
h+1+l−1

p

)
: (h+ 1) and independent

of m. Therefore, the claim holds in all possible cases. ■

Proposition 5 (NVAR(p, 1): Long-Term Response to Persistent WN-Innovations).

Let yt evolve as in Eq. (2), and let x = aAx + v, with a =
∑p

l=1 αl. Assume yt is weakly

stationary. Then,

lim
H→∞

H∑
h=0

∂yi,t+H

∂uj,t+h

=
∂xi

∂vj
=
[
(I − aA)−1

]
ij

.

Proof: First, note that x = (I − aA)−1v and therefore ∂x/∂v = (I − aA)−1. Turning to

yt, under weak stationarity,

R ≡ lim
H→∞

H∑
h=0

∂yt+H

∂ut+h

= lim
H→∞

H∑
h=0

∂yt+h

∂ut

=
∞∑
h=0

∂yt+h

∂ut

.

To find R, write yt in companion form as zt = Fzt−1 + et. We have

∂yt+h

∂ut

=
∂yt+h

∂zt+h

∂zt+h

∂et

∂et
∂ut

= [In, 0n, ..., 0n]F
h[In, 0n, ..., 0n]

′ .

Since
∑∞

h=0 F
h = (I − F )−1,

R =
∞∑
l=0

∂yt+l

∂ut

=
(
(I − F )−1

)
11

is given by the n× n matrix in position (1,1) in the np× np matrix (I − F )−1.

Let M = (I − F )−1 and partition it into p2 blocks of dimension n × n, denoted by
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{Mlm}l,m=1:p. Then, R = M11. We have

I = M(I − F )

=

M11 M12 ... M1p

...
...

. . .
...

Mp1 Mp2 ... Mpp




I − α1A −α2A −α3A ... −αp−1A −αpA

−In In 0n ... 0n 0n
0n −In In ... 0n 0n
...

. . . . . .
...

0n 0n ... −In In 0n
0n 0n ... 0n −In In


Comparing the left- and right-hand sides for block (1, p), we get

0n = −M11αpA+M1p ,

which implies M1p = M11αpA. For block (1, l), we get

0n = −M11αlA+M1l −M1,l+1 , l ∈ 2 : (p− 1) ,

which implies

M12 = M11α2A+M13 = M11α2A+M11α3A+M14 = ... = M11(α2 + ...+ αp)A .

The first element gives

In = M11(I − α1A)−M12 = M11 (I − (α1 + α2 + ...+ αp)A) = M11(I − aA) ,

which implies M11 = ((I − F )−1)11 = (I − aA)−1. ■

Proposition 6 (NVAR(p, 1): Long-Term Response to Persistent AR(1)-Innovations).

Let yt evolve as in Eq. (2), and let xt = aAxt + vt, with a =
∑p

l=1 αl. Assume yt and xt are

weakly stationary, and assume (1− ρjL)ujt = εjt ∼ WN and (1− ρjL)vjt = ϵjt ∼ WN , with

ρj ∈ [0, 1). Then,

lim
H→∞

H∑
h=0

∂yi,t+H

∂εj,t+h

= lim
H→∞

H∑
h=0

∂xi,t+H

∂ϵj,t+h

=
1

1− ρj

[
(I − aA)−1

]
ij

.

Proof: It holds that

∂xt+h

∂ϵt
=

h∑
l=0

∂xt+h

∂vt+h−l

∂vt+h−l

∂ϵt
and

∂yt+h

∂εt
=

h∑
l=0

∂yt+h

∂ut+h−l

∂ut+h−l

∂εt
.
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By Proposition 5, under stationarity of xt and yt, we also know that

∂xt

∂vt
= lim

H→∞

H∑
l=0

∂yt+l

∂ut

= (I − aA)−1 .

For xt, ∂xt+h/∂vt+h−l = 0 for l > 1. We then have

lim
H→∞

H∑
h=0

∂xt+H

∂ϵt+h

=
∞∑
h=0

∂xi,t+h

∂ϵj,t
=

∞∑
h=0

∂xi,t+h

∂vj,t+h

∂vj,t+h

∂ϵj,t
=

∞∑
h=0

[
(I − aA)−1

]
ij
ρhj =

[(I − aA)−1]ij
1− ρj

.

For yt, we have

lim
H→∞

H∑
h=0

∂yi,t+h

∂εj,t
= lim

H→∞

H∑
h=0

h∑
l=0

∂yi,t+l

∂uj,t

ρh−l
j

= lim
H→∞

H∑
l=0

∂yi,t+l

∂uj,t

H∑
h=l

ρh−l
j

= lim
H→∞

H∑
l=0

∂yi,t+l

∂uj,t

1− ρH−l+1
j

1− ρj

=
1

1− ρj
lim

H→∞

H∑
l=0

∂yi,t+l

∂uj,t

− lim
H→∞

H∑
l=0

ρH−l+1
j

1− ρj

∂yi,t+l

∂uj,t

.

By Proposition 5, the first term equals (1− ρj)
−1 [(I − aA)−1]ij.

The second term equals zero. To see this, break it up as follows:

lim
H→∞

H−1∑
l=0

ρH−l+1
j

1− ρj

∂yi,t+l

∂uj,t

+ lim
H→∞

ρj
1− ρj

∂yi,t+H

∂uj,t

.

The latter term equals zero since yt is stationary. The former term can be written as

1

1− ρj
lim

H→∞
ρH+1−c
j

H−1∑
l=0

ρc−l
j

∂yi,t+l

∂uj,t

∀ c > 0 .

Let c = H(1 − δ) for δ > 0 small. Since lim
H→∞

ρH+1−c
j = 0, it remains to be shown that the

limt of the second term in this product is finite, in which case the limit of products is equal

to the product of their limits, which is zero.
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Let ρ̃j = ρ
c/(H−1)−1
j . For δ small enough, ρ̃j ∈ [0, 1). We then have

lim
H→∞

H−1∑
l=0

ρc−l
j

∂yi,t+l

∂uj,t

= lim
H→∞

H−1∑
l=0

(
ρ
c/l−1
j

)l ∂yi,t+l

∂uj,t

≤ lim
H→∞

H−1∑
l=0

ρ̃lj
∂yi,t+l

∂uj,t

≤ lim
H→∞

H−1∑
l=0

∂yi,t+l

∂uj,t

=
[
(I − aA)−1

]
ij
< ∞ ■

A.2 NVAR(p, 1): Stationarity

Proposition 7 (NVAR(1, 1): Stationarity).

Let yt = aAyt−1 + ut. Assume ut ∼ WN and a ̸= 0.

Then yt is weakly stationary iff |λi| < 1/|a| for all eigenvalues λi of A.

Proof: Let LA and L be the sets of eigenvalues of A and aA, respectively:

LA = {λi : |λiI − A| = 0} ,

L = {li : |liI − aA| = 0} .

The pairs of eigenvalues li and λi are related by the identity λi = li/a:

|liI − aA| = |a(li/aI − A)| = an|li/aI − A| = 0 ⇔ |li/aI − A| = 0 .

We have

yt is weakly stationary ⇔ ∀ li ∈ L , |li| < 1

⇔ ∀ li ∈ L , |li/a| = |li|/|a| < 1/|a|
⇔ ∀ λi ∈ LA , |λi| < 1/|a| . ■

Proposition 8 (NVAR(p, 1): Stationarity I).

Let yt evolve as in Eq. (2). Assume ut ∼ WN and αl ̸= 0 for at least one l, and define

a =
∑p

l=1 |αl|.

If |λi| < 1/a for all eigenvalues λi of A, then yt is weakly stationary. Under αl ≥ 0 ∀ l,

the implication is both-sided.



This Version: 2026-01-23 A.6

Proof: Consider the NVAR(1,1) y∗t = aAy∗t−1 + u∗
t . By Proposition 7, we know

y∗t is weakly stationary ⇔ |λi| < 1/|a| ∀ λi ∈ LA = {λi : |λiI − A| = 0} .

It also holds that

y∗t is weakly stationary ⇔ |z∗i | > 1 ∀ z∗i ∈ Z∗ = {z∗i : |I − z∗i aA| = 0} .

where Z∗ is the set of roots z∗i of the lag polynomial (1− aAL). Analogously, let

Z = {zi : |I − α1Azi − ...− αpAz
p
i | = |I − (α1zi + ...+ αpz

p
i )A| = 0}

be the set of roots zi of the lag polynomial (1 − α1AL − α2AL
2 − ... − αpAL

p). The proof

shall show

∀ z∗i ∈ Z∗, |z∗i | > 1 ⇒ ∀ zi ∈ Z, |zi| > 1 .

We have

∀ z∗i ∈ Z∗ , |z∗i | > 1

⇔ ∀ z∗i ∈ Z∗, |az∗i | = a|z∗i | > a

⇔ ∀ zi ∈ Z , |α1zi + ...+ αpz
p
i | > a

⇒ ∀ zi ∈ Z , |zi| > 1 .

To show the last implication, suppose first that the statement on the second-last line is true,

but the statement on the last line is not. Then ∃zi ∈ Z s.t. |zi| ≤ 1. In turn,

|α1zi + ...+ αpz
p
i | ≤ |α1zi|+ ...+ |αpz

p
i |

≤ |α1zi|+ ...+ |αpzi|
≤ (|α1|+ ...+ |αp|)|zi| = a|zi| ≤ a ,

a contradiction. If αl ≥ 0 ∀ l, the last implication is both-sided:

∀ zi ∈ Z , |zi| > 1

⇒ ∀ zi ∈ Z , |α1zi + ...+ αpz
p
i | > |(α1 + ...+ αp)zi| = |azi| = a|zi| > a . ■

Proposition 9 (NVAR(p, 1): Stationarity II).

Let yt evolve as in Eq. (2). Assume ut ∼ WN and αl ̸= 0 for at least one l.
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Then, yt is weakly stationary iff for all eigenvalues λi of A the p× p matrix[
α1λi ... αpλi

Ip−1 0

]
has all eigenvalues inside the unit circle.

Proof: Stationarity of yt is equivalent to the statement that for all eigenvalues li of

F =


α1A α2A ... αp−1A αpA

In 0n ... 0n 0n
0n In ... 0n 0n
...

. . .
...

0n 0n ... In 0n


it holds that |li| < 1. We have

|liI − F | = 0

⇔
∣∣∣∣lpi I − lp−1

i α1A− ...− liαp−1A− αpA

∣∣∣∣ = 0

⇔ l
n(p−1)
i

∣∣∣∣liI − (α1 + α2/li + ...+ αp/l
p−1
i

)
A

∣∣∣∣ = 0

⇔
(
lp−1
i

(
α1 + α2/li + ...+ αp/l

p−1
i

))n ∣∣∣∣ li

α1 + α2/li + ...+ αp/l
p−1
i

I − A

∣∣∣∣ = 0

⇔
∣∣∣∣ li

α1 + α2/li + ...+ αp/l
p−1
i

I − A

∣∣∣∣ = 0 .

This establishes a relation between the eigenvalues li of F and the eigenvalues λi of A.

Given an eigenvalue li of F , we know li/
(
α1 + α2/li + ...+ αp/l

p−1
i

)
is an eigenvalue of A.

Conversely, given an eigenvalue λi of A, all eigenvalues li that solve

lpi − lp−1
i λiα1 − ...− liλiαp−1 − λiαp = 0

are eigenvalues of F . This equation is the characteristic polynomial for eigenvalues of the

matrix

FX =

[
α1λi ... αpλi

Ip−1 0

]
. ■

A.3 NVAR(p, 1): Relation to Dynamic Factor Model
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Proposition 4 (NVAR(p, 1)-Factor Model Equivalence Result).

Let yt evolve as in Eq. (2). Then we can write

yt = Λft + ut ,

where ft = C[α1yt−1 + ... + αpyt−p] ∈ Rr, r is the rank of A, and Λ and C are full-rank

matrices that satisfy A = ΛC.

Conversely, let yt = Λft + ξt, with ft ∈ Rr. Assume ft = Φ1ft−1 + ...+ Φpft−p + ηt with

Φl = ϕlΦ for all l and some Φ. Then, as n → ∞, we can write

yt = ϕ1Ayt−1 + ...+ ϕpAyt−p + ut , ut = Ληt + ξt ,

where A = ΛΦ(WΛ)−1W and W is any r × n matrix with distinct rows.

Proof: The argument works for any p. For expositional simplicity, let p = 2. The

NVAR(2, 1) can be written as

yt = A[α1yt−1 + α2yt−2] + ut .

Given r = rank(A), we can find n× r and r × n matrices B and C, both of full rank, such

that A = BC. In turn, we can write

yt = BC[α1yt−1 + α2yt−2] + ut = Λft + ut ,

where Λ = B and ft = C[α1yt−1 + ...+ αpyt−p].

Conversely, let

yt = Λft + ξt , ft = Φ1ft−1 + Φ2ft−2 + ηt .

Using an argument similar to the one in Cesa-Bianchi and Ferrero (2021), take r distinct

vectors of weights wk = (wk
1 , ..., w

k
n), k = 1 : r, and consider weighted averages of {yit}ni=1 of

the form

n∑
i=1

wk
i yit =

n∑
i=1

wk
i Λi·ft +

n∑
i=1

wk
i ξit .

For n large enough, ξ̄kt ≡
∑n

i=1 w
k
i ξit ∼ Op(n

−1/2) is negligible and we can write

Wyt = WΛft ,

where the r×n matrix W stacks wk′ along rows. In turn, we can solve for ft = (WΛ)−1Wyt.
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As this equation holds for all t, we can re-write the process for yt as

yt = Λ (Φ1ft−1 + Φ2ft−2 + ηt) + ξt

= ΛΦ1(WΛ)−1Wyt−1 + ΛΦ2(WΛ)−1Wyt−2 + ut ,

with ut = Ληt + ξt. If Φ1 = ϕ1Φ and Φ2 = ϕ2Φ for some ϕ1, ϕ2,Φ, this simplifies to

yt = ΛΦ(WΛ)−1W [ϕ1yt−1 + ϕ2yt−2] + ut

= ϕ1Ayt−1 + ...+ ϕpAyt−p + ut

for A = ΛΦ(WΛ)−1W of rank r. ■

A.4 NVAR(p, q)

Generality of q ∈ N

Throughout the paper and in the remainder of this section, I discuss the NVAR(p, q) under

q = 1 and q ∈ N\{1}. In Section 2.2.3, I mention that we can accommodate any q ∈ Q++

by constructing a restricted NVAR(p∗, q∗) with q∗ ∈ N, at least in the case of Eq. (4), where

ỹτ is interpreted as a stock variable.

Consider first q−1 ∈ N\{1}, i.e. observational frequency is an integer-multiple of the

network interaction frequency. For example, under monthly observations, q = 1/3 indicates

quarterly network interactions, and p signifies over how many past quarters transmission

is spread out. In line with Eq. (4), ỹτ is observed in each period τ , which means that ỹτ
must evolve at observational frequency. To make sense of q−1 ∈ N then, we can let the

stock ỹτ follow an NVAR(p∗, 1) with p∗ = p/q s.t. it depends on its value from q until p/q

observational periods ago, which correspond to the last p periods at network interaction

frequency:

yt = γ1Ayt−1 + ...+ γp∗Ayt−p∗ + ut , γl =

{
αlq if l is multiple of q−1

0 otherwise
.

In the previous example, the observed monthly series depends on its value in the past p

quarters, i.e. on its value three months ago, six months ago, etc., up to 3p months ago.48

Consider next the general case: q ∈ Q++. We can write q = q1q2 with q−1
1 ∈ N and q2 ∈

N.49 For example, under monthly observations, q = 4/3 implies that network interactions

48Note that this assumes that transmission happens instantaneously at the end of each (network
interaction-) period. Alternative definitions of a smoother transmission inevitably lead towards abandoning
the paradigm of discrete time.

49Note that q2 is the least common multiple of q and 1, whereas q1 is their greatest common denominator.
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occur every three weeks, q = 4/5 that they occur every five weeks, and q = 30/4 that

they occur every four days. We can model this case as a combination of the q ∈ N and

q−1 ∈ N cases: we observe every q2 ∈ N periods a snapshot of an NVAR(p∗, 1) process with

p∗ = p/q1 ∈ N and with parameters restricted as in the preceding paragraph. For example,

under monthly observations and q = 4/3, this amounts to observing every fourth period a

snapshot of a weekly process that depends on its value three weeks ago, six weeks ago, etc.

If yt is observed for T periods – t = 1 : T –, then ỹτ evolves for Tτ (network interaction-

)periods – τ = 1 : Tτ . Thereby, Tτ satisfies T = |{(1 : Tτ )/q} ∩ N|; the number of elements

in the set 1 : Tτ that are integer-multiples of q equals T . This yields Tτ = qT under q ∈ N,
and Tτ = T under q−1 ∈ N. For other q ∈ Q++, we have Tτ = q2T , where q2 is least common

multiple of q and 1.

NVAR(p, q): Granger-Causality/GIRFs and Stationarity

Proposition 2 (NVAR(p, q): Granger-Causality I).

Let yt evolve as in Eq. (4) for some q ∈ N\{1}.

Then, for k = ceil(hq/p) and some coefficients {chk}k=k:hq, we have

∂yi,t+h

∂uj,t

= chk
[
Ak
]
ij
+ ...+ chhq

[
Ahq
]
ij

.

Proof: By the definition of yt,

∂yi,t+h

∂yj,t
=

∂ỹi,(t+h)q

∂ỹj,tq
=

∂ỹi,τ+hq

∂ỹj,τ
=

∂ỹi,τ+hq

∂ũj,τ

.

The statement follows then from Proposition 1. ■

Proposition 10 (NVAR(p, q): Granger-Causality II).

Let yt evolve as in Eq. (5) for some q ∈ N\{1}.

Then, for k = ceil(hq/p) and some coefficients {chk}k=k:hq, we have

∂yi,t+h

∂uj,t

= chk
[
Ak
]
ij
+ ...+ chhq

[
Ahq
]
ij
+R ,

where R is a linear combination of Ak for some k /∈ k : hq.
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Proof: We have

yt+h = (ỹ(t+h)q + ...+ ỹ(t+h)q−q+1)/q ,

yt = (ỹtq + ...+ ỹtq−q+1)/q .

Suppose the first (latest) term, ỹtq is responsible for the change in yt. We then have

∂yt+h

∂ỹtq
=

∂(ỹ(t+h)q + ...+ ỹ(t+h)q−q+1)/q

∂ỹtq
=

∂ỹτ+hq

∂ỹτ
+ ...+

∂ỹτ+hq−q+1

∂ỹτ
,

and, by Proposition 1, connection-orders k ∈ {ceil((q(h− 1) + 1)/p), ..., hq} matter. Analo-

gous calculations show that if the last (earliest) term, ỹtq−q+1, is responsible for the change in

yt, connection-orders k ∈ {ceil(hq/p), ..., hq+ q− 1} matter, while the cases in-between lead

to sets contained in the union of these two sets. Therefore, regardless of which term is re-

sponsible for the change in yt, ∂yi,t+h/∂uj,t is a linear combination of Ak for connection-orders

k in the intersection of these two sets,

{ceil(hq/p), ..., hq} = {ceil((q(h− 1) + 1)/p), ..., hq} ∩ {ceil(hq/p), ..., hq + q − 1} . ■

Proposition 11 (NVAR(p, q): Preservaton of Long-Term Response to Persistent Innova-

tions under Time-Aggregation).

Let yt evolve as in Eq. (4) or Eq. (5) for some q ∈ N\{1}. Assume yt is weakly stationary

and (1− ρjL)ũjτ = ε̃jτ ∼ WN , with ρj ∈ [0, 1). Then,

lim
H→∞

Hq∑
h=0

∂yt+H

∂ε̃tq+h

= lim
H→∞

H∑
h=0

∂ỹτ+H

∂ε̃τ+h

.

Proof: If yt evolves as in Eq. (4), we have yt+H = ỹ(t+H)q, and so

lim
H→∞

Hq∑
h=0

∂yt+H

∂ε̃tq+h

= lim
H→∞

Hq∑
h=0

∂ỹ(t+H)q

∂ε̃tq+h

= lim
H→∞

Hq∑
h=0

∂ỹτ+Hq

∂ε̃τ+h

= lim
H→∞

H∑
h=0

∂ỹτ+H

∂ε̃τ+h

.

If yt evolves as in Eq. (5), we have yt+H = q−1(ỹ(t+H)q+ ...+ ỹ(t+H)q−q+1), and the same result
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is obtained:

lim
H→∞

Hq∑
h=0

∂yt+H

∂ε̃tq+h

= lim
H→∞

Hq∑
h=0

q−1

q−1∑
k=0

∂ỹ(t+H)q−k

∂ε̃tq+h

1 {h ≤ Hq − k}

= lim
H→∞

q−1

q−1∑
k=0

Hq−k∑
h=0

∂ỹ(t+H)q−k

∂ε̃tq+h

= lim
H→∞

Hq−k∑
h=0

∂ỹ(t+H)q−k

∂ε̃tq+h

= lim
H→∞

H∑
h=0

∂ỹτ+H

∂ε̃τ+h

.50 ■

Proposition 12 (NVAR(p, q): Contemporaneous Response to Within-Period Innovation).

Let yt evolve as in Eq. (5) for some q ∈ N\{1}. Assume yt is weakly stationary and (1 −
ρjL)ũjτ = ε̃jτ ∼ WN , with ρj ∈ [0, 1). Let ε̃τ = (ε̃1τ , ..., ε̃nτ )

′.

Then, for g ∈ 0 : (q − 1),

lim
g→∞

q
∂yt

∂ε̃τ−g

= lim
g→∞

g∑
h=0

∂ỹτ+g

∂ε̃τ+h

.

Proof: We consider the response of qyt =
∑q−1

k=0 ỹtq−k to a (high-frequency) innovation

ε̃tq−g, g ∈ 0 : (q − 1) that occurs within observational period t. We have

q
∂yt

∂ε̃tq−g

=

q−1∑
k=0

∂ỹtq−k

∂ε̃tq−g

1 {k ≤ g} =

q−1∑
k=0

∂ỹτ+g−k

∂ε̃τ
1 {k ≤ g} =

g∑
k=0

∂ỹτ+g−k

∂ε̃τ
=

g∑
h=0

∂ỹτ+h

∂ε̃τ
. ■

Proposition 13 (NVAR(p, q): Preservation of Stationarity under Time-Aggregation).

For some q ∈ N\{1}, let yt evolve as in Eq. (4) and let y∗t evolve as in Eq. (5). Assume

ũτ ∼ WN(0,Σ).

Then, yt and y∗t are weakly stationary iff ỹτ is weakly stationary.

Proof: Weak stationarity of ỹτ is defined by the conditions

1. E[ỹτ ] = E[ỹτ−l] ∀ l;

2. Cov(ỹτ , ỹτ−h) = Cov(ỹτ−l, ỹτ−l−h) ∀ l, h ,

50The indicator function ensures that only responses to contemporaneous or past impulses are summed-up.
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3. V[ỹτ ] = Cov(ỹτ , ỹτ ) < ∞ .

They imply that

1. E[yt] = E[ỹtq] = E[ỹ(t−l)q] = E[yt−l] ∀ l ,

2. Cov(yt, yt−h) = Cov(ỹtq, ỹ(t−h)q) = Cov(ỹ(t−l)q, ỹ(t−l−h)q) = Cov(yt−l, yt−l−h) ∀ l, h ,

3. V[yt] = Cov(yt, yt) < ∞ ,

which in turn is the definition of weak stationarity for yt. Similarly, they imply that

1. E[y∗t ] = E[ỹtq + ...+ ỹ(t−1)q+1]/q = E[ỹ(t−l)q + ...+ ỹ(t−l−1)q+1]/q = E[y∗t−l] ∀ l ,

2. Cov(y∗t , y
∗
t−h) = Cov(ỹtq + ...+ ỹ(t−1)q+1 , ỹ(t−h)q + ...+ ỹ(t−h−1)q+1)/q

2

Cov(y∗t , y
∗
t−h) = Cov(ỹ(t−l)q + ...+ ỹ(t−l−1)q+1 , ỹ(t−l−h)q + ...+ ỹ(t−l−h−1)q+1)/q

2

Cov(y∗t , y
∗
t−h) = Cov(y∗t−l, y

∗
t−l−h) ∀ l, h ,

3. V[y∗t ] = Cov(y∗t , y
∗
t ) < ∞ ,

which is the definition of weak stationarity for y∗t .

The other direction is proved in contrapositive form: if ỹτ is not weakly stationary, than

yt and y∗t are not, either. Write ỹτ in companion form as y̌τ = F y̌τ−1 + ǔτ . If ỹτ is not

weakly stationary, then limh→∞ F h = ∞. Hence, V[y̌τ ] = FV[y̌τ−1]F
′+Σ̌ diverges to infinity

as τ → ∞. (This holds if y̌τ starts in the infinite past and also if it has been initialized at

some y̌0 = (ỹ′0, ..., ỹ
′
−p+1)

′ with mean E[y̌0] and variance V[y̌0] < ∞.) The same holds then

for V[ỹτ ], the upper-left n×n block in the np×np matrix V[y̌τ ]. In turn, the same holds for

V[yt] = V[ỹtq] ,

V[y∗t ] = V[ỹtq + ...+ ỹ(t−1)q+1]/q
2 =

q−1∑
l=0

V[ỹtq]/q2 +
q−1∑

l,k=0,l ̸=k

Cov(ỹtq−l, ỹtq−k)/q
2 ■

NVAR(p, q): Networked Correlation of “Observable Innovations”

Proposition 14 (NVAR(p, q): Correlated “Observable Innovations” I).

Let yt evolve as in Eq. (4) for some q ∈ N\{1}. Assume yt is weakly stationary and ũτ ∼
WN(0,Σ). Define ut ≡ yt − E[yt|Ft−1], where Ft−1 = {ỹτ−q, ỹτ−q−1, ...}. Then,

V[ut] = Σ +

q−1∑
h=1

ΘhΣΘ
′
h , Θh = ∂ỹτ+h/∂ỹτ .
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Proof: By sequentially inserting for ỹτ−1, ỹτ−2, etc. in the expression for ỹτ , we get its

VMA(∞)-representation:

ỹτ = (I +Θ1L+Θ2L
2 + ...+Θq−1L

q−1 +ΘqL
q + ...)ũτ ,

where Θh = ∂ỹτ/∂ỹτ−h = ∂ỹτ+h/∂ỹτ . Combining this with the definition of ut ≡ yt −
E[yt|Ft−1] = ỹτ − E[ỹτ |Ft−1], yt and Ft−1, we get

ut = (I +Θ1L+ ...+Θq−1L
q−1)ũτ .

(Any ũτ−h is a function of ỹτ−h and more distant lags of ỹτ , which means that ũτ−q and

earlier terms are contained in Ft−1.) Since ũτ ∼ WN(0,Σ),

V[ut] = Σ +

q−1∑
h=1

ΘhΣΘ
′
h . ■

If Σ = diag(σ2
1, ..., σ

2
n), then, by Proposition 1, for some constants {dhhi,hj

}hi,hj=k(h):h,

Cov(uit, ujt) = σ2
i 1 {i = j}+

n∑
o=1

σ2
o

q−1∑
h=1

h∑
hi,hj=k(h)

dhhi,hj

[
Ahi
]
io

[
Ahj
]
jo

.

Proposition 15 (NVAR(p, q): Correlated “Observable Innovations” II).

Let yt evolve as in Eq. (5) for some q ∈ N\{1}. Assume yt is weakly stationary and ũτ ∼
WN(0,Σ). Define ut ≡ yt − E[yt|Ft−1], where Ft−1 = {ỹτ−q, ỹτ−q−1, ...}. Then,

V[ut] =
1

q2

(
q−1∑
h=0

ΓhΣΓ
′
h

)
, Γh =

h∑
m=0

Θm , Θh = ∂ỹτ+h/∂ỹτ .

Proof: By sequentially inserting for ỹτ−1, ỹτ−2, etc. in the expression for ỹτ , we get its

VMA(∞)-representation:

ỹτ = (I +Θ1L+Θ2L
2 + ...+Θq−1L

q−1 +ΘqL
q + ...)ũτ ,

where Θh = ∂ỹτ/∂ỹτ−h = ∂ỹτ+h/∂ỹτ . Therefore,

yt =
1

q
(ỹτ + ...+ ỹτ−q+1) =

1

q
(I + Γ1L+ Γ2L

2 + ...+ Γq−1L
q−1 + ΓqL

q + ...)ũτ ,

where Γh = I +
∑h

m=1Θm. Combining this with the definitions of ut ≡ yt − E[yt|Ft−1], yt
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and Ft−1, we get

ut =
1

q
(I + Γ1L+ ...+ Γq−1L

q−1)ũτ .

In turn, since ũτ ∼ WN(0,Σ),

V[ut] =
1

q2

(
Σ +

q−1∑
h=1

ΓhΣΓ
′
h

)
. ■

If Σ = diag(σ2
1, ..., σ

2
n), then, by Proposition 1, for some constants {dhhi,hj

}hi,hj=1:h and

{dhhi
}hi=1:h,

Cov(uit, ujt) =
1

q
σ2
i 1 {i = j}+ 1

q2

n∑
o=1

σ2
o

q−1∑
h=1

h∑
hi,hj=1

dhhi,hj

[
Ahi
]
io

[
Ahj
]
jo

+
1

q2
σ2
j

q−1∑
h=1

h∑
hi=1

dhhi

[
Ahi
]
io

[
Ahi
]
ij

+
1

q2
σ2
i

q−1∑
h=1

h∑
hj=1

dhhj

[
Ahj
]
io

[
Ahj
]
ji

.

To illustrate Propositions 14 and 15, consider an NVAR(p, q) for q = 2. If yt = ỹτ for

t = τ/q ∈ N (as in Eq. (4)), then ut = ũτ + α1Aũτ−1, with

V[ut] = Σ + α2
1AΣA

′ .

This reveals that Cov(uit, ujt) = 1 {i = j} σ2
i + α2

1

∑n
k=1 aikajkσ

2
k. If instead yt = (ỹτ + ... +

ỹτ−q+1)/q for t = τ/q ∈ N (as in Eq. (5)), then ut =
1
2
ũτ +

1
2
(I + α1A)ũτ−1, with

V[ut] =
1

2
Σ +

1

4
α2
1AΣA

′ +
1

4
α1 (ΣA+ (ΣA)′) ,

which leads to Cov(uit, ujt) = 1 {i = j} 1
2
σ2
i + 1

4
α1(aijσ

2
j + ajiσ

2
i ) +

1
4
α2
1

∑n
k=1 aikajkσ

2
k. In

the former case, Cov(uit, ujt) is determined by common exposure to third units, while in

the latter case bilateral exposure matters as well. In either case, exposure means first-order

connections.51 Under q = 3, exposure is determined by first- and second-order connections:

51To understand the different results for stock and flow variables, assume for simplicity that there are no
self-links: aii = 0 ∀ i. For a stock variable, yit = ỹi,τ , which implies that uit only depends on ũi,τ , not
on ũi,τ−1: we have uit = ũi,τ + α1

∑n
j=1 aij ũj,τ−1. As a result, the only (possibly) common terms in uit

and ujt are the one-period lagged high-frequency innovations of third units, ũk,τ−1, and any comovement
between uit and ujt is due to common exposure to these units: Cov (uit, ujt) ̸= 0 iff ∃ k s.t. aik, ajk ̸= 0.
In contrast, for a flow variable, yit = ỹi,τ + ỹi,τ−1, which implies that uit also depends on ũi,τ−1: we have
uit = ũi,τ + ũi,τ−1 +α1

∑n
j=1 aij ũj,τ−1. Besides common exposure to third units, comovement is also due to

bilateral exposure: aij ̸= 0 | aji ̸= 0 ⇒ Cov (uit, ujt) ̸= 0.
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e.g. for a stock variable, we have ut = ũτ + α1Aũτ−1 + (α2A+ α2
1A

2)ũτ−2, with

V[ut] = Σ + (α2
1 + α2)AΣA

′ + α2
1α2

(
AΣ(A2)′ +

[
AΣ(A2)′

]′)
+ α4

1A
2Σ(A2)′ .

Proposition 3 (NVAR(p, q): Limit Distribution of “Observable Innovations”).

Let yt evolve as in Eq. (5) for some q ∈ N\{1}. Assume yt is weakly stationary and

ũτ ∼ WN(0,Σ) is temporally independent. Define ut ≡ yt − E[yt|Ft−1], where Ft−1 =

{ỹτ−q, ỹτ−q−1, ...}. Also, let a =
∑p

l=1 αl. Then, as q → ∞,

√
qut

d→ N(0,Γ∗ΣΓ
′
∗) , Γ∗ = (I − aA)−1 .

Proof: By the proof of Proposition 15, we know

ut =
1

q
Γhũτ−h , Γh =

h∑
m=0

Θm , Θh = ∂ỹτ+h/∂ỹτ .

Define ũh ≡ Γhũτ−h with E[ũh] = 0 and Vh ≡ V[ũh] = ΓhΣΓ
′
h. Consider d′ut =

1
q

∑q−1
h=0 d

′ũh

for some d ∈ Rn. By Lyapunov’s Central Limit Theorem,

q

sq
d′ut =

1

sq

q−1∑
h=0

d′ũh
d→ N(0, 1) ,

where s2q =
∑q−1

h=0 d
′Vhd. We know s2q/q → d′V∗d, V∗ = Γ∗ΣΓ

′
∗ (shown below). Therefore, by

the above and by Slutsky’s theorem,

√
qd′ut =

sq√
q

q

sq
d′ut

d→ N(0, d′V∗d) .

As this argument applies for arbitrary d, by the Cramer-Wold theorem,
√
qut

d→ N(0, V∗).

It remains to show that s2q/q = 1
q

∑q−1
h=0 σh → d′V∗d ≡ σ∗, with σh = d′Vhd. By Proposi-

tion 5, as h → ∞, Γh → Γ∗. Therefore, Vh → Γ∗ΣΓ∗, and σh → σ∗. In other words, ∀ δ > 0,

∃ H s.t. |σh − σ∗| < δ ∀ h > H. Also, for H ≤ q − 1,

|s2q/q − σ∗| =

∣∣∣∣∣1q
q−1∑
h=0

(σh − σ∗)

∣∣∣∣∣
≤ 1

q

H−1∑
h=0

|σh − σ∗|+
1

q

q−1∑
h=H

|σh − σ∗|

≤ 1

q

H−1∑
h=0

|σh − σ∗|+ δ .
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The first term vanishes as q → ∞. Hence, ∀ δ > 0, lim
q→∞

|s2q/q − σ∗| ≤ δ, i.e. s2q/q → σ∗. ■
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B NVAR: Inference

B.1 Timing of Network Effects α|A

In all of the derivations in this section, A is taken as given, and the explicit conditioning on

it is omitted for notational simplicity.

NVAR(p, 1): Asymptotic Properties of α̂OLS

The OLS estimator for α from Section 3.1 is given by

α̂OLS =

[
T∑
t=1

X ′
n,tXn,t

]−1 [ T∑
t=1

X ′
n,tyt

]
=

[
n∑

i=1

T∑
t=1

xn,itx
′
n,it

]−1 [ n∑
i=1

T∑
t=1

xn,ityit

]
.

Proposition 16 (Large n Consistency & Asymptotic Normality of α̂OLS).

Suppose

1. Model is specified correctly: yit = x′
n,itα∗ + uit.

2. Et−1[uit] = 0.

3. The observed network adjacency matrix An converges to some limit A∗ in the sense

that ∀ t and l, k = 1 : p, as n → ∞,

(a) 1
n

∑n
i=1 (An,i·yt−l)

′ (An,i·yt−k)
p→ E

[
(A∗,i·yt−l)

′ (A∗,i·yt−k)
]
; and

(b) 1
n

∑n
i=1 (An,i·yt−l)

′ uit
p→ E

[
(A∗,i·yt−l)

′ uit

]
.

4. Et−1[uituis] = σ2 if t = s and zero otherwise.

5. ∀ t and l, k = 1 : p, as n → ∞,

1√
n

n∑
i=1

(An,i·yt−l)
′ uit

d→ N
(
E
[
(A∗,i·yt−l)

′ uit

]
,V
[
(A∗,i·yt−l)

′ uit

])
.

Under conditions 1 - 3, α̂OLS
p→ α∗ as n → ∞. Under conditions 1 - 5,

√
n(α̂OLS − α∗)

d→ N

(
0,

σ2

T
E[x∗,itx

′
∗,it]

−1

)
.
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By condition 1,

α̂OLS =

[
1

n

1

T

n∑
i=1

T∑
t=1

xn,itx
′
n,it

]−1 [
1

n

1

T

n∑
i=1

T∑
t=1

xn,itx
′
n,itα∗ +

1

n

1

T

n∑
i=1

T∑
t=1

xn,ituit

]
.

Condition 3 ensures that

1

n

1

T

n∑
i=1

T∑
t=1

xn,itx
′
n,it

p→ 1

T

T∑
t=1

E[x∗,itx
′
∗,it] ,

1

n

1

T

n∑
i=1

T∑
t=1

xn,ituit
p→ 1

T

T∑
t=1

E[x∗,ituit]

are defined. By condition 2 and the Law of Iterated Expectations (LIE), E[x∗,ituit] = 0. As

usual, assembling these pieces by Slutsky’s theorem yields consistency.

To establish asymptotic Normality, write

√
n(α̂OLS − α∗) =

[
1

n

1

T

n∑
i=1

T∑
t=1

xn,itx
′
n,it

]−1 [
1√
n

1

T

n∑
i=1

T∑
t=1

xn,ituit

]
.

Condition 5 and Slutsky’s theorem ensure that

1√
n

1

T

n∑
i=1

T∑
t=1

xn,ituit
d→ N

(
0,V

[
1

T

T∑
t=1

x∗,ituit

])
,

as E
[
1
T

∑T
t=1 x∗,ituit

]
= 0. By condition 4 and LIE,

V

[
1

T

T∑
t=1

x∗,ituit

]
= E

[(
1

T

T∑
t=1

x∗,ituit

)(
1

T

T∑
s=1

x∗,isuis

)′]
=

1

T 2

T∑
t=1

T∑
s=1

E[x∗,itx
′
∗,isuituis] =

σ2

T
E[x∗,itx

′
∗,it] .

Slutsky’s theorem then yields asymptotic Normality with mean zero and variance σ2

T
E[xitx

′
it]

−1.

Proposition 17 (Large T Consistency & Asymptotic Normality of α̂OLS).

Suppose

1. Model is specified correctly: yt = Xtα∗ + ut.

2. Et−1[ut] = 0.

3. yt is ergodic and strictly stationary (SS).

4. Et−1[utu
′
t] = Σ.
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Under conditions 1 - 3, α̂OLS
p→ α∗ as T → ∞. Under conditions 1 - 4,

√
T (α̂OLS − α∗)

d→ N
(
0 , E[X ′

tXt]
−1E[X ′

tΣXt]E[X ′
tXt]

−1′
)

.

By condition 1,

α̂OLS =

[
1

T

T∑
t=1

X ′
tXt

]−1 [
1

T

T∑
t=1

X ′
tXtα +

1

T

T∑
t=1

X ′
tut

]
.

By the Weak Law of Large Numbers (WLLN) for ergodic and SS time series (condition 3),

1

T

T∑
t=1

(Anyt−l)
′ (Anyt−k)

p→ E
[
(Anyt−l)

′ (Anyt−k)
]

so that 1
T

∑T
t=1X

′
tXt

p→ E[X ′
tXt]. By the same condition and condition 2, 1

T

∑T
t=1 X

′
tut

p→ 0.

This establishes consistency.

To establish asymptotic Normality, write

√
T (α̂OLS − α∗) =

[
1

T

T∑
t=1

X ′
tXt

]−1 [
1√
T

T∑
t=1

X ′
tut

]
.

By the Central Limit Theorem (CLT) for ergodic and SS time series, 1√
T

∑T
t=1X

′
tut

d→
N (0,V[X ′

tut]), as E[X ′
tut] = 0. Thereby, V[X ′

tut] = E[X ′
tutu

′
tXt] = E[X ′

tΣXt] by LIE

and conditions 2 and 4. Slutsky’s theorem then yields asymptotic Normality with mean

zero and variance E[X ′
tXt]

−1E[X ′
tΣXt]E[X ′

tXt]
−1′ . If Σ = σ2I, the latter boils down to

σ2E[
∑n

i=1 xitx
′
it]

−1. If in addition we can write E[
∑n

i=1 xitx
′
it] = nE[xitx

′
it], it becomes

σ2

n
E[xitx

′
it]

−1.

Proposition 18 (Large (n, T ) Consistency & Asymptotic Normality of α̂OLS).

Suppose either i) the conditions in Proposition 16 hold, or ii) the conditions in Proposition 17

as well as the following two conditions hold:

1. Σ = σ2I

2.
∑n

i=1 E[xn,itx
′
n,it] = nE[x∗,itx

′
∗,it]

Then,
√
nT (α̂OLS − α∗)

d→ N
(
0, σ2E[x∗,itx

′
∗,it]

−1
)
as (n, T ) → ∞.
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NVAR(p, q), q ∈ N\{1}: Identification

With A given, the problem of identifying α under ỹτ ∼ NVAR(p, 1) and {yt}Tt=1 = {ỹtq}Tt=1

for q ∈ N\{1} is akin to identifying α in the AR(p) x̃τ = α1x̃τ−1+ ...+αpx̃τ−p+ ǔτ when the

univariate process x̃τ is observed every q periods: {xt}Tt=1 = {x̃tq}Tt=1. For example, under

p = 1 and q = 2, we have

yt = α2
1A

2yt−1 + ut , and xt = α2
1xt−1 + et ,

respectively, and in both cases α1 is identified only up to sign. While characterization of

the identified set remains elusive for the former case for all but (p = 1, q = 2), the latter

case provides insights for q = 2 and general p. For further discussion, see Palm and Nijman

(1984).

Let γh = E[x̃tx̃t−h] = γ−h, which can be estimated by the analogy principle as γ̂h =
1

T−h

∑T
t=h+1 x̃tx̃t−h. Under q = 2, γ̂h is observed only for h even (and zero). The Yule-

Walker equations for an AR(p) lead to the system

[
γ0 − σ2 γ1 ... γm

]
=
[
α1 α2 ... αp

]

γ1 γ0 . . . γm−1

γ2 γ1
. . .

...
...

...
. . .

γp γp−1 . . . γ1 γ0 . . .

 ,

for m ≥ p − 1. In principle, this system of (nonlinear) equations could be solved for the

unknowns {αl}l=1:p and {γh}h=1,3,.... However, the following analysis suggests that {αl}l=1,3,...

and {γh}h=1,3,... are (jointly) identified only up to sign, respectively.

Let m be the largest odd number in 1 : m and m the largest even one. For the non-

observed {γh}h=1,3,..., we have

[
γ1 γ3 ... γm

]
=
[
α1 α2 ... αp

]


γ0 γ2 γ4 . . . γm−1

γ1 γ1 γ3
...

...
...

γp−1 γp−3

 ,

and therefore 
γ1
γ3
...

γm

 = A


γ1
γ3
...

γm

+ A


γ0
γ2
...

γm

 = (I − A)−1A


γ0
γ2
...

γm

 , (A.1)

where only αl for l even appear in A (and its elements are linear in α), and only αl for l odd
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appear in A. For the observed {γh}h=0,2,..., we have

[
γ0 − σ2 γ2 ... γm

]
=
[
α1 α2 ... αp

]

γ1 γ1 γ3 . . . γm−1

γ2 γ0 γ2
...

...
...

γp γp−2

 ,

and therefore 
γ0 − σ2

γ2
...

γm

 = B


γ1
γ3
...

γm

+B


γ0
γ2
...

γm

 , (A.2)

where again only αl for l even appear in B, and only αl for l odd appear in B. Eq. (A.1)

and Eq. (A.2) illustrate that multiplying (γ1, γ3, ...) by (−1) as well as (α1, α3, ...) (i.e. A

and B) does not change the system of equations.

Posterior Derivations: (α,Σ)

This section derives the conditional (full-sample) posteriors p(α|Ỹ1:Tτ , Σ̃), p(Σ̃|Ỹ1:Tτ , α), p(βα|α, λα)

and p(λ−1
α |α, βα) in an NVAR(p, 1). To simplify notation, I ignore the possibility that Ỹ1:Tτ

has been obtained from a data augmentation step and write Y1:T , Xt, ut and Σ for Ỹ1:Tτ X̃τ ,

ũτ and Σ̃.

Under ut ∼ N(0,Σ), the (conditional) likelihood associated with the NVAR(p, 1) is

p(Y1:n,1:T |α,Σ, Y1:n,−p+1:0) =
T∏
t=1

p(yt|θ, yt−p:t−1)

=
T∏
t=1

(2π)−n/2|Σ|−1/2exp

{
−1

2
u′
tΣ

−1ut

}

= (2π)−nT/2|Σ|−T/2exp

{
−1

2

T∑
t=1

u′
tΣ

−1ut

}
,

where ut = yt −
∑p

l=1 αlAyt−l = yt −Xtα. I write this likelihood in short as p(Y |α,Σ).

Under a Uniform prior for α, – p(α) ∝ c –, we get

p(α|Y, βα, λα,Σ) ∝ p(Y |α,Σ)p(α)

∝ exp

{
−1

2

{
α′

[
T∑
t=1

X ′
tΣ

−1Xt

]
α− 2α′

[
T∑
t=1

X ′
tΣ

−1yt

]}}
,
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which shows that

α | (Y,Σ) ∼ N
(
ᾱ, V̄α

)
,

with

V̄α =

[
T∑
t=1

X ′
tΣ

−1Xt

]−1

, ᾱ = V̄α

[
T∑
t=1

X ′
tΣ

−1yt

]
.

Under a uniform prior for Σ, we get

p(Σ|Y, α) ∝ p(Y |α,Σ)

∝ |Σ|−T/2exp

{
−1

2

T∑
t=1

u′
tΣ

−1ut

}

= |Σ|−T/2exp

{
−1

2
tr
[
Σ−1U ′U

]}
,

where U is T × n and stacks ut along rows. This shows that

Σ | (Y, α) ∼ IW (S̄, v̄) , S̄ = U ′U , v̄ = T .

The mode of p(α,Σ|Y ) is equal to the Generalized LS estimator (α̂, Σ̂), obtained by it-

erating on the conditional estimators α̂|Σ =
[∑T

t=1X
′
tΣ

−1Xt

]−1 [∑T
t=1X

′
tΣ

−1yt

]
and Σ̂|α =

1
T

∑T
t=1 utu

′
t until convergence.

NVAR(p, q), q ∈ N\{1}: Data Augmentation

The usual formulas for the Kalman filter and Carter & Kohn simulation smoother simplify

for the particular state space model characterizing the NVAR. This can be exploited for

computational efficiency.

Given an np × 1 vector x, let [x]1 = x1:n contain the first n elements, [x]−1 all but the

first n elements, and [x]−p all but the last n elements. Similarly, given an np × np matrix

X, let

X =

[
[X]1,1 [X]1,−1

[X]−1,1 [X]−1,−1

]
=

[
[X]−p,−p [X]−p,p

[X]p,−p [X]p,p

]
=

[
[X]−p,·
[X]p,·

]
=
[
[X]·,−p [X]·,p

]
,

where [X]1,1 and [X]p,p are n× n, [X]p,· is n× (np− p) and [X]·,p is (np− p)× rn.
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For a stock variable yt, the NVAR(p, q) for q ∈ N\{1} leads to the state space model

yt = [In, 0n×np−n]sτ if t = τ/q ∈ N ,

sτ = Rsτ−1 + vτ , vτ ∼ N(0,Σv) , for τ = 1 : Tτ ,

where st = (ỹ′τ , ỹ
′
τ−1, ..., ỹ

′
τ−p+1)

′ and vτ = (u′
τ , 0, ..., 0)

′ are np× 1, and

R =

[
α1A,α2A, ..., αpA

Inp−n×np−n 0np−n×n

]
and Σv =

[
Σu 0n×np−n

0np−n×np

]
are np× np. For notational simplicity, write ỹτ as xτ .

Algorithm 1 (Kalman Filter for NVAR(p, q), q ∈ N\{1}, for Stock Variables).

1. Initialize s0|0 = 0 and P0|0 =
∑h

l=0R
lΣvR

l′ for h large.

2. For τ = 1 : Tτ , given sτ−1|τ−1 and Pτ−1|τ−1,

(a): Forecast sτ : compute sτ |τ−1 and Pτ |τ−1 as

•
[
sτ |τ−1

]
1
= R1,·sτ−1|τ−1 ,

[
sτ |τ−1

]
−1

=
[
sτ−1|τ−1

]
−p

,

•
[
Pτ |τ−1

]
11

= R1,·Pτ−1|τ−1R
′
1,· + Σu ,

[
Pτ |τ−1

]
1,−1

=
[
Pτ |τ−1

]′
−1,1

,[
Pτ |τ−1

]
−1,1

=
[
Pτ−1|τ−1

]
−p,· R

′
1,· ,

[
Pτ |τ−1

]
−1,−1

=
[
Pτ−1|τ−1

]
−p,−p

.

(b): Forecast xτ : if τ/q ∈ N, compute xτ |τ−1 and Fτ |τ−1 as

• xτ |τ−1 =
[
sτ |τ−1

]
1
,

• Fτ |τ−1 =
[
Pτ |τ−1

]
11

.

If τ/q /∈ N, skip this step.

(c): Given observation xτ , update forecast for sτ : if τ/q ∈ N, compute sτ |τ and Pτ |τ

as

• sτ |τ = sτ |τ−1 +
[
Pτ |τ−1

]
·,1 F

−1
τ |τ−1(xτ − xτ |τ−1) ,

• Pτ |τ = Pτ |τ−1 −
[
Pτ |τ−1

]
·,1 F

−1
τ |τ−1

[
Pτ |τ−1

]
1,· .

If τ/q /∈ N, let sτ |τ = sτ |τ−1 and Pτ |τ = Pτ |τ−1.

Thereby, R1,· = [α1A,α2A, ..., αp]A = (α1, ..., αp)⊗ A, and
[
Pτ |τ−1

]
1,· =

[
Pτ |τ−1

]′
·,1.
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For a flow variable yt, the NVAR(p, q) for q ∈ N\{1} leads to the state space model

yt = Ψsτ if t = τ/q ∈ N ,

sτ = Rsτ−1 + vτ , vτ ∼ N(0,Σv) , for τ = 1 : Tτ ,

where sτ , vτ , R and Σv are analogous to above, but with dimensions np′ instead of np, where

p′ = max{p, q}. If p′ > p, we set αl = 0 for l = (p + 1) : p′. Also, Ψ = [In, ..., In, 0n×n(p′−q)]

is n× np′. Step (b) in the Kalman filter changes to

• xτ |τ−1 = Ψsτ |τ−1 =

q∑
l=1

[
sτ |τ−1

]
l
,

• Fτ |τ−1 = ΨPτ |τ−1Ψ
′ =

q∑
l=1

q∑
k=1

[
Pτ |τ−1

]
lk

,

and step (c) changes to

• sτ |τ = sτ |τ−1 + Pτ |τ−1Ψ
′F−1

τ |τ−1(xτ − xτ |τ−1) ,

• Pτ |τ = Pτ |τ−1 − Pτ |τ−1Ψ
′F−1

τ |τ−1ΨPτ |τ−1 ,

where Pτ |τ−1Ψ
′ =
∑q

l=1

[
Pτ |τ−1

]
·,l =

(
ΨPτ |τ−1

)′
.

Algorithm 2 (Carter and Kohn (1994) Simulation Smoother for NVAR(p, q), q ∈ N\{1}).

1. Run the Kalman filter to get {sτ |τ , sτ |τ−1, Pτ |τ , Pτ |τ−1}Tτ
τ=1.

2. Draw
[
smTτ

]
1
from N

([
sTτ |Tτ

]
1
,
[
PTτ |Tτ

]
11

)
.

3. For τ = Tτ − 1, ..., 0, given draw
[
smτ+1

]
1
from N

([
sτ+1|τ+2

]
1
,
[
Pτ+1|τ+2

]
11

)
, draw [smτ ]1

from N
([
sτ |τ+1

]
1
,
[
Pτ |τ+1

]
11

)
with

• sτ |τ+1 = sτ |τ + Pτ |τR
′
1·
(
R1·Pτ |τR

′
1· + Σ

)−1
(
[
smτ+1

]
1
−
[
sτ+1|τ

]
1
) ,

• Pτ |τ+1 = Pτ |τ − Pτ |τR
′
1·
(
R1·Pτ |τR

′
1· + Σ

)−1
R1·Pτ |τ .

Relative to the notation used for the Kalman filter, this is with a slight abuse of no-

tation, as sτ |τ+1 ̸= E [sτ |X1:τ , sτ+1] but sτ |τ+1 = E [sτ |X1:τ , [sτ+1]1], and similarly Pτ |τ+1 =

V [sτ |X1:τ , [sτ+1]1]. See Nelson and Kim (1999, p. 194) for the adjustments of the CKSS

required when st is a companion form-VAR(1).
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B.2 Joint Inference: Network & Timing (α,A)

Posterior Derivations for A

Normal Prior Under independent priors aij ∼ N(bij, λ
−1
a ), the conditional posterior of

A|(α,Σ, B, λa) is

p(A|Y, α,Σ, B, λa) ∝ p(Y |α,A,Σ)p(A|B, λa)

∝ exp

{
−1

2

T∑
t=1

(yt − Azt)
′ Σ−1 (yt − Azt)

}
exp

{
−1

2
λa

n∑
i,j=1

(aij − bij)
2

}

= exp

{
−1

2
tr
[
Σ−1 (Y − ZA′)

′
(Y − ZA′)

]}
exp

{
−1

2
λatr[(A−B)′(A−B)]

}
,

∝ exp

{
−1

2
tr
[
Σ−1 [A(Z ′Z + λaΣ)A

′ − 2A(Z ′Y + λaB
′Σ)]

]}
, 52

which lets us deduce that

A′ | (Y, α,Σ) ∼ MN
(
Ā, ŪA, V̄A

)
, with ŪA = [Z ′Z + λaΣ]

−1
, Ā = ŪA [Z ′Y + λaB

′Σ] , V̄A = Σ ,

and therefore

A | (Y, α,Σ) ∼ MN
(
Ā′, V̄A, ŪA

)
.

Note that − log p(A|Y, α,Σ, B, λa) is proportional to the LS objective function with a

Ridge-penalty in Eq. (12). Therefore, its conditional minimizer is the mode of p(A|Y, α,Σ).
The (joint) minimzer of the objective function in Eq. (12) is the mode of p(α,A|Y,Σ, B, λa)

under a uniform prior for α.

Exponential Prior Consider the alternative prior aij ∼ Exponential(λa). It leads to the

conditional posterior

p(A|Y, α,Σ, λa) ∝ p(Y |α,A,Σ)p(A|λa)

∝ exp

{
−1

2

T∑
t=1

(yt − Azt)
′Σ−1 (yt − Azt)

}
exp {−λaι

′Aι}

= exp

{
−1

2
tr
[
Σ−1 (Y − ZA′)

′
(Y − ZA′)

]}
exp {−λaι

′Aι}

∝ exp

{
−1

2
tr
[
Σ−1 [AZ ′ZA′ − 2A (Z ′Y − λaιι

′Σ)]
]}

,

52Note that
∑n

i,j=1(aij − bij)
2 = vec(A − B)′vec(A − B) = tr[(A − B)′(A − B)]. Also, I use the results

that tr[AB] = tr[BA], tr[A] = tr[A′] and c tr[A] = tr[cA].
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where ι is an n-dimensional vector of ones.53 This leads to

A′ | (Y, α,Σ, λa) ∼ MN
(
Ā, ŪA, V̄A

)
, truncated to Rn2

+ ,

with ŪA = (Z ′Z)−1, Ā = ŪA [Z ′Y − λaιι
′Σ] and V̄A = Σ. Alternatively, this can be written

as

vec(A′) | (Y, α,Σ, λa) ∼ N
(
vec(Ā), V̄A ⊗ ŪA

)
, truncated to Rn2

+ .

Note that − log p(A|Y, α,Σ, λa) is proportional to a LS objective function analogous to

Eq. (12), but imposing restrictions aij ≥ 0 and using a Lasso-penalty λa

∑n
i,j=1 |aij| =

λa

∑n
i,j=1 aij to shrink aij to zero.

This expression simplifies under Σ = I:

Ai· | (Y, α,Σ = I, λa) ∼ N
(
(Ā′)i,·, ŪA

)
, truncated to Rn

+ ,

independent across rows i. One can draw from this distribution using Gibbs sampling,

iterating on the conditional densities

aij | (Ai,−j, Y, α,Σ = I, λa) ∼ N(µaij ,Σaij) , truncated to R+

for j = 1 : n, whereby

µaij = (Ā′)ij + (ŪA)j,−j(ŪA)
−1
−j,−j(Ai,−j − (Ā′)i,−j) and Σaij = (ŪA)jj − (ŪA)j,−j(ŪA)

−1
−j,−j(ŪA)−j,j .

Analogously, the mode of this distribution is obtained by iterating on the conditional modes

âij|(Ai,−j, α,Σ = I, λa) = max{0, ǎij} , ǎij =

∑T
t=1(yit − Ai,−jz−j,t)zjt − λa∑T

t=1 z
2
jt

(see Meng and Rubin (1993)). Doing so for all rows i yields the mode of p(A|Y, α,Σ = I, λa),

which is the conditional OLS estimator of A.

NVAR(p, 1): Asymptotic Properties of (α̂OLS, ÂOLS)

Let θ = (α,A). As elaborated on above, the OLS estimator solves

θ̂ = argmin
θ∈Θ

Qn,T (θ;Y ) ,

with Q(θ;Y ) =
1

nT

T∑
t=1

ut(θ)
′ut(θ) + λ̃

n∑
i,j=1

(aij − bij)
2 ,

53Note that
∑n

i,j=1 aij = ι′Aι. On top of the rules referenced above, here I also used a′Ba = tr[Baa′].
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with ut(θ) = yt − Azt = yt − Xtα and λ̃ = 1
nT

λa. To render (α,A) identified, fix αl for

some l and drop it from α, with appropriate redefinitions of yt, zt and Xt. Under the

alternative normalization ||α||1 = 1, the following consistency results would go through, but

the interior-requirement for asymptotic Normality would be violated.

Proposition 19 (Large T Consistency & Asymptotic Normality of θ̂ = (α̂, Â)).

Take Θ = [−c, c]p−1+n2
for c > 0 large such that Θ ⊂ Rp−1+n2

is compact, and suppose

1. λ̃n,T = o(T− 1
2 ).

2. yt is ergodic and strictly stationary (SS).

3. E[X ′
tXt] and E[ztz′t] are of full rank.

4. Model is specified correctly: yt = AX̃tα + ut.

5. Et−1[ut] = 0.

6. Et−1[utu
′
t] = Σ.

Under conditions 1 - 3, θ̂ = (α̂, Â)
p→ θ0 as T → ∞. Under conditions 1 - 5,

√
T (θ̂LS − θ0)

d→ N(0, H−1MH−1) ,

with H and M defined below.

By conditions 1 and 2, Qn,T (θ;Y ) converges uniformly in probability to the limit objective

function Q(θ) = 1
n
E [ut(θ)

′ut(θ)], which is continuous on Θ:

sup
θ∈Θ

∣∣ 1

nT

T∑
t=1

ut(θ)
′ut(θ)−

1

n
E [ut(θ)

′ut(θ)] + λ̃n,T

n∑
i,j=1

(aij − bij)
2
∣∣

≤ 1

n
sup
θ∈Θ

∣∣ 1
T

T∑
t=1

ut(θ)
′ut(θ)− E [ut(θ)

′ut(θ)]
∣∣+ sup

θ∈Θ

∣∣λ̃n,T

n∑
i,j=1

(aij − bij)
2
∣∣

converges in probability to zero because, under condition 1,

sup
θ∈Θ

∣∣λ̃n,T

n∑
i,j=1

(aij − bij)
2
∣∣ = λ̃n,T

n∑
i,j=1

(c+ bij)
2 ≤ λ̃n,T

n∑
i,j=1

c̃ = λ̃n,Tn
2c̃ → 0 ,

where c̃ = maxi,j(c + bij)
2, while under condition 2, 1

T

∑T
t=1 ut(θ)

′ut(θ)
p→ E [ut(θ)

′ut(θ)] by

WLLN for ergodic and SS time series. Finally, under condition 3, Q(θ) is uniquely minimized

by θ0 = (α∗, A∗) defined by the first-order conditions (FOC)

α∗|A∗ = E[Xt(A∗)
′Xt(A∗)]

−1E[Xt(A∗)
′yt] , A∗|α∗ = E[ytzt(α∗)

′]E[zt(α∗)zt(α∗)
′]−1 .



This Version: 2026-01-23 A.29

Note that for c large enough, we necessarily get a solution θ0 ∈ int(Θ). Without the imposed

normalization, θ0 would not be unique, as for any (α∗, A∗) that solves the above, (kα∗, k
−1A∗)

for any k ∈ R does, too, because Xt(k
−1A∗) = k−1Xt(A∗) and zt(kα∗) = kzt(α∗).

54

Write
−→
A for vec (A). Note that

√
T λ̃ → 0 by condition 1. By condition 2 and the CLT

for ergodic and SS time series,

√
TQ

(1)
n,T (θ0;Y ) =

√
T

[
∂Qn,T (θ;Y )

∂α
∂Qn,T (θ;Y )

∂
−→
A

] ∣∣∣∣∣
θ=θ0

= −2

[
1
n

1√
T

∑T
t=1 X

′
t(yt −Xtα∗)

1
n

1√
T

∑T
t=1

−→
[(yt − A∗zt)z

′
t]−

√
T λ̃

−→
[A∗ −B]

]
d→ N(0,M) ,

because

− 2

n

[
E [X ′

t(yt −Xtα∗)]

E
−→

[(yt − A∗zt)z
′
t]

]
= − 2

n

[
E [X ′

tut]

E
−→

[utz
′
t]

]
= 0

by conditions 3 and 4. Using conditions 4, 5 and 6 as well as LIE,

M =
4

n2

 E [X ′
tutu

′
tXt] ·

E
[

−→
[utz

′
t]u

′
tXt

]
E
[

−→
[utz

′
t]

−→
[utz

′
t]
′] =

4

n2

[
E [X ′

tΣXt] ·
E [zt ⊗ ΣXt] E [ztz

′
t]⊗ Σ

]
.

Furthermore, using again the WLLN for ergodic and SS time series as well as conditions 4

and 5,

Q
(2)
n,t(θ0;Y ) =

∂Qn,T (θ;Y )

∂α∂α′
∂Qn,T (θ;Y )

∂α∂
−→
A

′

∂Qn,T (θ;Y )

∂
−→
A ∂α′

∂Qn,T (θ;Y )

∂
−→
A ∂

−→
A

′

 p→
[
H11 H ′

21

H21 H22

]
≡ H ∀ θ

p→ θ0 ,

54With αl dropped, it still holds that Xt(k
−1A∗) = k−1Xt(A∗) and zt(kα∗) = kzt(α∗), but the yt in the

expression for α∗|A∗ is in fact yt − Ayt−l, while it is unchanged in the expression for A∗|α∗. This renders
the solution unique.
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with

∂Qn,T (θ;Y )

∂α∂α′ =
2

nT

T∑
t=1

X ′
tXt

p→ 2

n
E[X ′

tXt] ≡ H11 ,

∂Qn,T (θ;Y )

∂
−→
A ∂α′

= − 2

nT

T∑
t=1

(yt −XX̃tα)X̃t,1· − z1tAX̃t

...

(yt −XX̃tα)X̃t,n· − zntAX̃t

 p→ 2

n

AE[z1tX̃t]
...

AE[zntX̃t]

 ≡ H21 ,

∂Qn,T (θ;Y )

∂
−→
A ∂

−→
A

′ =
2

nT

T∑
t=1

z
′
t ⊗ z1tIn

...

z′t ⊗ zntIn

 p→ 2

n

E[z
′
t ⊗ z1tIn]

...

E[z′t ⊗ zntIn]

 ≡ H22 .
55

Consistency and asymptotic Normality also apply under a Lasso-penalty for A, although

no analytical expression for the conditional estimator can be found in that case. Under

aij ≥ 0, only consistency goes through as A∗ is (likely) not interior.

55To see this, note that
−→

[(yt −Azt)z
′
t] consists of n stacked vectors with the one in position l given by

(yt −Azt)zlt = (yt −AX̃tα)X̃t,l·α, whose derivativate w.r.t α′ is (yt −AX̃tα)X̃t,l· + z1tAX̃t. Moreover, note

that
−→

[Aztz
′
t] consists of vectors of the form Aztzlt = [A1·ztzlt, ..., An·ztzlt]

′ whose derivative w.r.t. A gives
z′t ⊗ zltIn.
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C Business Cycles by Lagged IOC

C.1 Theory

RBC Model with Contemporaneous Input-Output Conversion

In this case, the amount of good j purchased at t and used in the production at t coincide:

xijt = xij
t ≡ xij. Because the environment is static, I drop time subscripts for notational

simplicity. Firm i solves the problem

max
li,{xij}nj=1

pizil
bi
i

n∏
j=1

(
xij
)aij − wli −

n∑
j=1

pjx
ij .

The first-order conditions (FOCs) w.r.t. li and xij give

li = bi
piyi
w

, xij = aij
piyi
pj

.

The latter FOC provides an interpretation of aij = (pjx
ij)/(piyi) as the value of good j

purchased by sector i divided by the value of sector i’s output. Plugging these expressions

into the production function and taking logs yields

p̃i = kp
i +

n∑
j=1

aij p̃j − z̃i ⇔ p̃ = kp + Ap̃− z̃ ,

where p̃i = ln(pi/w) and z̃i = ln(zi). The constant kp
i = −

[
biln(bi) +

∑n
j=1 aijln(aij)

]
reflects differences in the reliance on different production factors across sectors i.

The representative household’s problem is

max
{ci}ni=1

n∑
i=1

γi ln(ci/γi) , s.t.
n∑

i=1

pici = w .

The FOC yields ci = γi
w
pi
. Hence, γi is the share of good i in households’ expenditures.

Market clearing for good j requires yj = cj +
∑n

i=1 x
ij. Plugging in the expressions for

cj and xij and multiplying by pj/w yields the following expression for the Domar weight of

sector j, λj:

λj ≡
yjpj
w

= γj +
n∑

i=1

aijλi ⇔ λ = γ + A′λ .

As a result, λ = (I−A′)−1γ. The Domar weight of sector i reflects its importance as a supplier

to relevant sectors in the economy, where relevance is defined by households’ expenditure
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shares {γj}nj=1: λi =
∑n

j=1 γjlji. lji is element (j, i) of the Leontief-inverse (I−A)−1. It sums

up connections of all order from a sector j to a sector i and therefore shows how important

sector i is in j’s supply chain. Using the definition of λi, we have ỹ = λ̃− p̃, where ỹ = ln(y)

and λ̃ = ln (λ). Combining this with the equation for p̃ yields

ỹ = ky + Aỹ + z̃ ,

with ky = (I − A)λ̃ − kp. For the sake of completeness, labor market clearing requires∑n
i=1 li = 1 and gives w =

∑n
i=1 bipiyi.

RBC Model with Single-Lag Input-Output Conversion

Assume good j used in production at time t is purchased at time t − 1: xijt = xij
t−1. Firm

i’s value function is then:

Vi

({
xij
t−1

}n
j=1

)
= max

lit,{xij
t }nj=1

Πit + βVi

({
xij
t

}n
j=1

)
, Πit = pitzitl

bi
it

n∏
j=1

(
xij
t−1

)aij − wtlit −
n∑

j=1

pjtx
ij
t .

The FOC w.r.t. lit and xij
t give

lit = bi
pityit
wt

, xij
t = βaij

pi,t+1yi,t+1

pjt
.

Plugging these expressions into the production function and taking logs gives

p̃it = kp1
it +

n∑
j=1

aij p̃j,t−1 − z̃it ⇔ p̃t = kp1
t + Ap̃t−1 − z̃t ,

where again p̃it = ln
(

pit
wt

)
and z̃it = ln(zit). Also, kp1

it = kp1
i − (1 − bi)G̃

w
t,t−1 with kp1

i =

−
[
biln(bi) +

∑n
j=1 aijln(βaij)

]
and G̃w

t,t−1 = ln(Gw
t,t−1), G

w
t,t−1 = wt/wt−1.

Provided that in every period t households spend all their period t income, wt, we again

get cit = γiwt/pit. By market clearing of good j, then,

yjt = cjt +
n∑

i=1

xij
t = γj

wt

pjt
+

n∑
i=1

βaij
pi,t+1yi,t+1

pjt
.

Multiplying again by pjt and dividing by wt gives

λjt ≡
yjtpjt
wt

= γj +
n∑

i=1

βaijG
w
t+1,tλi,t+1 ⇔ λt = γ + βGw

t+1,tA
′λt+1 .
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Stacking this equation for all i and solving forward shows that, compared to the static

economy above, Domar weights are adjusted for future changes in the value of the numéraire:

λt =
∞∑
h=0

βhGw
t+h,t(A

′)hγ .

For output ỹt = ỹt − p̃t, we obtain

ỹt = ky1
t + Aỹt−1 + z̃t ,

where ky1
t = λ̃t − Aλ̃t−1 − kp1

t and again ỹt = ln(yt) and λ̃t = ln(λt).

In the steady state (SS) with z̃t = z̃ ∀ t we get

λ = (I − βA′)−1γ , p̃ = (I − A)−1(kp1 − z̃) , ỹt = (I − A)−1(ky1 + z̃) ,

where kp1 contains elements kp1
i , and ky1 = (I − A)λ̃ − kp1. Relative to the static economy

above, the meaning of aij changes slightly: in SS, it equals

aij = β−1(pjx
ij)/(piyi) .

Taking this into account, the SS value of λ is unchanged. p̃ is slightly higher than in the

static economy, as kp1
i = kp

i − (1 − bi)ln(β) > kp
i . For the same reason, ỹ is slightly lower.

These differences vanish as β → 1.

RBC Model with Multiple-Lags Input-Output Conversion

I start with the general CES case. Firm i’s problem is then

max
{lit,{xij

t ,xij
t,t−1,

xij
t,t−2}nj=1}∞t=0

∞∑
t=0

βtΠit s.t. xij
t = xij

t+1,t + xij
t+2,t ∀ t, i, j ,

Πit = pitzitl
bi
it

n∏
j=1

[
α1

(
xij
t,t−1

)r
+ α2

(
xij
t,t−2

)r]aij
r − wtlit −

n∑
j=1

pjtx
ij
t .

For each input j, the firm chooses how much to buy in period t, xij
t , and how to distribute

the purchased amount for production over periods t + 1, t + 2. Abstracting from perfect

substitutability allows me to ignore the boundary constraints lit, x
ij
t+1,t, x

ij
t+2,t ≥ 0 ∀ t, i, j.

Let x̌ij
t+h,t be the amount of good j purchased at t and not used up in production before
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period t+ h. We obtain the following value function:

Vi

(
{x̌ij

t,t−2, x̌
ij
t,t−1}nj=1

)
= max

lit,{xij
t ,

xij
t,t−1,x

ij
t,t−2}j

Πit + βVi

(
{x̌ij

t+1,t−1, x̌
ij
t+1,t}nj=1

)
s.t. x̌ij

t,t−2 = xij
t,t−2 ,

x̌ij
t+1,t = xij

t ,

x̌ij
t,t−1 = xij

t,t−1 + xij
t+1,t−1 .

The problem can be written more compactly as

Vi

(
{xij

t,t−2, x̌
ij
t,t−1}nj=1

)
= max

lit,{xij
t ,

xij
t+1,t−1}j

[
pitzitl

bi
it

n∏
j=1

[
α1

(
x̌ij
t,t−1 − xij

t+1,t−1

)r
+ α2

(
xij
t,t−2

)r]aij
r

−wtlit −
n∑

j=1

pjtx
ij
t

]
+ βVi

(
{xij

t+1,t−1, x
ij
t }nj=1

)
In each period t, and for each input j, a firm only chooses how how much to buy in period

t – to be used for production in t + 1 and t + 2 – and how much of the leftover amount

purchased at t− 1 to use at t as opposed to leaving it for t+ 1.

Cobb-Douglas Aggregation of Inputs Purchased in Past Under r → 0, we have

xijt =
(
xij
t,t−1

)α1
(
xij
t,t−2

)α2
and the optimality conditions yield

lit = bi
pityit
wt

, xij
t,t−1 = βα1aij

pityit
pj,t−1

, xij
t,t−2 = β2α2aij

pityit
pj,t−2

.

Inserting these expressions into the production function, leads after a little algebra to

p̃it = kp2
t +

n∑
j=1

aij [α1p̃j,t−1 + α2p̃j,t−2]− z̃t ⇔ p̃t = kp2
t + α1Ap̃t−1 + α2Ap̃t−2 − z̃t ,

where kp2
it = kp2

i −(1−bi)
[
α1G̃

w
t,t−1 + α2G̃

w
t,t−2

]
and kp2

i = −biln(bi)−
∑n

j=1 aij [α1ln(βα1aij) + α2ln(β
2α2aij)].

The market clearing condition for good j is now

yjt = cjt +
n∑

i=1

xij
t = cjt +

n∑
i=1

xij
t+1,t +

n∑
i=1

xij
t+2,t .
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Plugging in the optimality conditions and multiplying by pjt/wt to solve for λjt gives

λjt = γj + βα1G
w
t,t−1

n∑
i=1

aijλi,t+1 + β2α2G
w
t,t−2

n∑
i=1

aijλi,t+2 .

When stacked for all i, one could solve forward to obtain λt. For output we get then

ỹt = ky2
t + α1Aỹt−1 + α2Aỹt−2 + z̃t ,

where ky2
t = λ̃t − α1Aλ̃t−1 − α2Aλ̃t−2 − kp2

t .

In the SS with z̃t = z̃ ∀ t we get

λ = (I − (βα1 + β2α2)A
′)−1γ , p̃ = (I − A)−1(kp2 − z̃) , ỹ = (I − A)−1(ky2 + z̃) .

In this economy, we have

aij =
[
βα1 + β2α2

]−1
(pjx

ij)/(piyi) .
56

Again, λ̃ is unaltered relative to the static economy, while p̃ increases and ỹ decreases, owing

to the increase in kp2
i = kp

i − (1− bi)ln ((βα1)
α1(β2α2)

α2) > kp
i . Differences to the economy

with one period-lagged input-output conversion vanish as α1 → 1, and differences to the

economy with contemporaneous input-output conversion vanish as β → 1 and either α1 → 1

or α1 → 0. Decreasing α1 starting from α1 = 1 decreases kp2
i and therefore increases prices

and decreases output.

General CES-Aggregation of Inputs Purchased in Past For general r, the optimality

conditions yield

lit = bi
yitpit
wt

, xij
t,t−1 =

[
aijα1β

yitpit
pjt−1xr

ijt

] 1
1−r

, xij
t,t−2 =

[
aijα2β

2 yitpit
pjt−2xr

ijt

] 1
1−r

,

Inserting the resulting expressions into the equation for xijt gives

xijt = aijpityit

[
n1p

− r
1−r

j,t−1 + n2p
− r

1−r

j,t−2

] 1−r
r

, n1 = α1(α1β)
r

1−r , n2 = α2(α2β
2)

r
1−r .

In turn, inserting this equation back for xijt in the expressions above yields:

xij
t,t−1 = aij

pityit
pj,t−1

n−r
1

n1 + n2

(
pj,t−1

pj,t−2

) r
1−r

, xij
t,t−2 = aij

pityit
pj,t−2

n−r
2

n1

(
pj,t−1

pj,t−2

)− r
1−r

+ n2

.

56Note that xij ̸= xij . In terms of xij , we have aij = xijpj/(piyi)(βα1)
−α1(β2α2)

−α2 .
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Inserting the expression for xijt into the production function gives

1 = zitb
bi
i p

∗
it

n∏
j=1

a
aij
ij

[
n1

Gw
t,t−1

p∗j,t−1

r
1−r

+ n2

Gw
t,t−2

p∗j,t−2

r
1−r

]aij 1−r
r

,

where p∗it = pit/wt. Linearizing around the SS characterized below leads to

p̂∗it = cp2it +
n∑

j=1

aij
[
χ1p̂

∗
j,t−1 + χ2p̂

∗
j,t−2

]
− ẑit ⇔ p̂∗t = cp2t + χ1Ap̂

∗
t−1 + χ2Ap̂

∗
t−2 − ẑt ,

where cp2it = −(1−bi)
[
χ1Ĝ

w
t,t−1 + χ2Ĝ

w
t,t−2

]
, χ1 = n1/(n1+n2) and χ2 = 1−χ1. Inserting the

optimal choices of cjt, x
ij
t+1,t and xij

t+2,t into the market clearing condition for good j yields

λjt = γj +
n∑

i=1

aij
n−r
1

n1 + n2

(
pi,t

pi,t−1

) r
1−r

Gw
t+1,tλi,t+1 +

n∑
i=1

aij
n−r
2

n1

(
pi,t

pi,t−1

)− r
1−r

+ n2

Gw
t+2,tλi,t+2 .

Using the relation ŷt = λ̂t − p̂∗t , we get

ŷt = cy2t + χ1Aŷt−1 + χ2Aŷt−2 + ẑt ,

where cy2t = cp2t + λ̂t − χ1Aλ̂t−1 − χ2Aλ̂t−2.

In SS,

λ =

(
I − n−r

1 + n−r
2

n1 + n2

A′
)−1

γ , p̃ = (I − A)−1(kp3 − z̃) , ỹ = (I − A)−1(ky3 + z̃) ,

where kp3 contains elements kp3
i = −biln(bi)−

∑n
j=1 aijln(aij)− (1− bi)

1−r
r
ln(n1 + n2) and

ky3 = (I − A)λ̃− kp3. Also,

aij =

[
n−r
1 + n−r

2

n1 + n2

]−1

(pjx
ij)/(piyi) .

C.2 Data

...
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C.3 Estimation

Likelihood Evaluation

Under q = 1, the model with contemporaneous IOC (Eqs. (15) and (17)) yields the following

state space form:

st = Φ0 + Φ1st−1 + vt , ∆yt = Ψst ,

where st = (∆y′t, e
′
t, e

a
t )

′ and vt = (0, ε′t, ε
a
t )

′ ∼ N(0,Σv) are (2n+ 1)× 1, Ψ =
[
In, 0

]
, and

Φ0 =

Lγ0
0

 , Φ1 =

0 L Lλ

0 P 0

0 0 ρa

 , Σv =

0 0 0

0 Σ 0

0 0 σ2
a

 ,

and we further define L = (I −A)−1 to be the Leontief-inverse and P and Σ to be diagonal

matrices containing (ρ1, ..., ρn) and (σ2
1, ..., σ

2
n), respectively.

To write the model with lagged IOC (Eqs. (16) and (17)) in state space form, let p̃ =

max{p, q} and αl = 0 for l = (p + 1) : p̃. Define the (np̃ + n + 1) × 1 vectors sτ =

(∆ỹ′τ , ...,∆ỹ′τ−p̃+1, e
′
τ , e

a
τ )

′ and vτ = (0, ..., 0, ε′τ , ε
a
τ )

′. We have the analogous state space form

as above, with

Φ0 =


γ

0
...

0

 , Φ1 =


α1A . . . αp̃−1A αp̃A I λ

Inp−n 0 0 0

0 0 P 0

0 0 0 ρa

 , Σv =


0 0 0 0

0 0 0 0

0 0 Σ 0

0 0 0 σ2
a

 .

Under q = 1, we observe ∆yt = ∆ỹτ , meaning that Ψ = [In, 0]. Under q > 1, we have observe

∆yt =
∑q−1

l=0 ∆ỹτ−l – i.e. Ψ = [In, ..., In, 0] – only for periods t = τ/q ∈ N (see Section B).

Prior-Construction & -Drawing

The Uniform prior for α ∈ [0, 1]p−1 ∩ {α :
∑p−1

l=1 αl ≤ 1} can be broken up as follows:

p(α1, ..., αp−1) = p(α1|α2, ..., αp−1)p(α2|α3, ..., αp−1)...p(αp−2|αp−1)p(αp−1) ,

where for l = 1 : p− 2,

p(αl|αl+1, ..., αp−1) =

l
(1−

∑p−1
m=l αm)

l−1

(1−
∑p−1

m=l+1 αm)
l−1 if αl ∈

[
0, 1−

∑p−1
m=l+1 αm

]
0 otherwise

,
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and

p(αp−1) =

{
(p− 1) (1− αp−1)

p−2 if αp−1 ∈ [0, 1]

0 otherwise
.

To draw from p(α1, ..., αp−1), I draw αp−1 from its marginal distribution and iteratively

draw αp−2, ..., α1 from the conditionals, using the inverse-cdf method in each step: to draw

yi ∼ f(y), I draw xi ∼ U(0, 1) and find yi so that
∫ yi
−∞ f(y)dy = xi. In the present case, this

yields

αl|(αl+1, ..., αp−1) =

(
1−

p−1∑
m=l+1

αm

)[
1− (1− xl)

1/l
]
, xl ∼ U(0, 1) ,

for l = 1 : (p− 2), and αp−1 = 1− (1− xp−1)
1/(p−1), xp−1 ∼ U(0, 1).

For the parameters (σ2
a, σ

2′)′ ∈ Rn+1
++ , an upper bound has to be chosen so as to specify

a proper Uniform prior distribution, since draws from it are needed to initialize the SMC

sampler. A high upper bound is desirable so as to avoid domain restrictions in areas with

non-trivial likelihood values. However, for efficient sampling, lower values are preferred. I

choose a low upper bound to initialize the sampler, but allow the algorithm to disrespect

it in search for parameter-values associated with high likelihood values and therefore high

posterior mass. Ex-post, I redefine the upper bound as the largest posterior draw among

(σ2
a, σ

2′)′ across all models. The resulting MDDs could be re-scaled to take this into account,

but this is not necessary, as all models’ MDD is “off” by the same proportionality constant,

which means that the ranking is unaffected.57 I set σ̄2
i = 0.5V[∆ỹit] and σ̄2

a = maxi σ̄
2
i .

SMC Algorithm & Parameter Transformation

I use the adaptive tempering variant of the SMC algorithm (see Cai et al. (2021)), which

ensures a precise estimation of the posterior even as the distance between the prior and

posterior distributions is difficult to assess. For efficient sampling even under tight domain

restrictions, I reparameterize the parameters in the mutation step of the SMC algorithm as

follows. Define the function g s.t. θ̌ = g−1(θ) is generated by transforming αl into lnαl/αp

for l = 1 : (p− 1), σ2
i into ln σ2

i for i = 1 : n, and ρi into ln ρi/(1− ρi) for i = 1 : n and i = a.

These are one-to-one mappings and ensure that θ̌ ∈ R. As a result, no draws in the mutation

57Let s = (σ2
a, σ

2′)′ ∈ [0, s̄]n+1. We get the MDD

p(Y ) =

∫
p(Y |θ−s, s)p(θ−s)p(s)d(θ−s, s) = s̄−(n+1)

∫
p(Y |θ−s, s)p(θ−s)d(θ−s, s) .

If the upper bound is ex-post rescaled to s∗, the MDD needs to be corrected by multiplying by (s̄/s∗)n+1.
The analogous holds with heterogeneous upper bounds.



This Version: 2026-01-23 A.39

step are rejected because of domain violations. To account for this reparameterization, the

acceptance probabilities in the mutation of particle i in iteration n are adjusted as follows:

Algorithm 3 (Particle Mutation in SMC Algorithm).

1. Given particle θin−1, set θ
i,0
n = θin−1.

2. For m = 1 : NMH :

• Compute θ̌i,m−1
n = g−1(θi,m−1

n ) and draw

v̌|θi,m−1
n ∼ q̌(v̌|θi,m−1

n ) = N(θ̌i,m−1
n , c2nΣn) = N(g−1(θi,m−1

n ), c2nΣn) .

• Set

θi,mn =

{
v = g(v̌) w.p. α(v|θi,m−1

n )

θi,m−1
n otherwise

,

where

α(v|θi,m−1
n ) = min

{
1,

p(Y |v)p(v)/q(v|θi,m−1
n )

p(Y |θi,m−1
n )p(θi,m−1

n )/q(θi,m−1
n |v)

}
.

The densities q(v|θi,m−1
n ) and q(θi,m−1

n |v) are obtained using analogous density

transformations starting from q(v̌|θi,m−1
n ) and q(θ̌i,m−1

n |v), respectively; e.g.

q(v|θi,m−1
n ) = q̌(g−1(v)|θi,m−1

n )|J(v)| .

where J(θ) is the Jacobian matrix.

3. Set θin = θi,NMH
n .

Note that because q̌(g−1(v)|θi,m−1
n ) = q̌(g−1(θi,m−1

n )|v) is symmetric, we obtain

α(v|θi,m−1
n ) = min

{
1,

p(Y |v)p(v)
p(Y |θi,m−1

n )p(θi,m−1
n )

|J(θi,m−1
n )|

|J(v)|

}
.

The Jacobian matrix J(θ) = ∂θ̌/∂θ′ is diagonal and leads to

|J(θ)| =

{
n∏

i=1

ρi(1− ρi)σ
2
i

}−1{p−1∏
l=1

αl

}−1

{ρa(1− ρa)}−1 .

C.4 Results
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D Dimensionality-Reduction by Parsimonious NVAR

D.1 Hyperparameter Selection

Marginal Posterior Mode of λa Under a Normal prior for A and a uniform hyperprior

for λa, we obtain

p(λa|A,B) ∝ p(A|B, λa)

∝ λn2/2
a exp

{
−1

2
λatr [(A−B)′(A−B)]

}
,

whereby tr [(A−B)′(A−B)] =
∑n

i,j=1(aij − bij)
2. This shows that

λa | (A,B) ∼ G

(
n2

2
+ 1 ,

1

2
tr [(A−B)′(A−B)]

)
.

Under an exponential prior for A and a uniform hyperprior for λa, we obtain

p(λa|A) ∝ p(A|λa)

∝ λn2

a exp {−λaι
′Aι} ,

which shows that

λa | A ∼ G
(
n2 + 1 , ι′Aι

)
.

Conditional MDD under NVAR-R By Bayes’ theorem,

p(A|Y, λa, B, ·) = p(Y |A, ·)p(A|λa, B)p(λa)

p(Y |λa, ·)
,

where · stands for the remaining parameters affecting the likelihood, (α,Σ). The conditional

MDD p(Y |λa, ·) is obtained by rearranging this formula, inserting the known expressions for

the densities p(Y |A, ·), p(A|λa, B), p(λa) = c and p(A|Y, λa, B, ·), and cancelling all terms

involving A:

p(Y |λa, ·) =
p(Y |A, ·)p(A|λa, B)p(λa)

p(A|Y, λa, B, ·)

= c
(2π)−

nT
2 |Σ|−T

2 exp
{
−1

2

∑T
t=1 u

′
tΣ

−1ut

}
(2π)−

n2

2 λ
n2

2
a exp

{
−1

2
λa

∑n
i,j=1(aij − bij)

2
}

(2π)−
n2

2 |V̄A|−
n
2 |ŪA|−

n
2 exp

{
−1

2
tr
[
Ū−1
A (A− Ā′)′V̄ −1

A (A− Ā′)
]}

= c(2π)−
nT
2 |Σ|−

T
2 |V̄A|

n
2 |ŪA|

n
2 λ

n2

2
a exp

{
−1

2

[
T∑
t=1

y′tΣ
−1yt + λa

n∑
i,j=1

b2ij − tr
[
Ū−1
A ĀV̄ −1

A Ā′]]} .
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D.2 NVAR-R: Network-Construction Using Multiple

Link-Types

Parameterizing B by bij = wb′
ijβb with a hyperprior βb ∼ N(0, λ−1

b I), we get

p(βb|A, λa, λb) ∝ p(A|βb, λa)p(βb|λb)

∝ exp

{
−1

2
λa

(
vec(A)−W bβb

)′ (
vec(A)−W bβb

)}
exp

{
−1

2
λbβ

′
bβb

}
∝ exp

{
−1

2

[
β′
b

(
λaW

b′W b + λbI
)
βb − 2β′

b

(
λaW

b′vec(A)
)]}

,

where W b is s.t. W bβb = vec(B). This shows that

βb | (A, λa, λb) ∼ N
(
β̄b, V̄βb

)
, V̄βb

=
[
λaW

b′W b + λbI
]−1

, β̄b = V̄βb

[
λaW

b′vec(A)
]
.

Further specifying a hyperprior p(λb) ∝ c for λb yields

p(λb|βb) ∝ p(βb|λb)

∝ λ
kb/2
b exp

{
−1

2
λbβ

′
bβb

}
,

where kb = dim(βb). This implies

λb | βb ∼ G

(
kb
2
+ 1 ,

1

2
β′
bβb

)
.

There are two special cases. Under λa = 0, we use a Uniform prior for A, and βb and λb

become irrelevant to the estimation problem. As λa → ∞, we effectively reparameterize A

as B, which, if the elements of B are parameterized as bij = wb′
ijβb, means that the above

posterior for βb changes to

βb | (Y,Σ, λb) ∼ N
(
β̄b, V̄βb

)
,

with

V̄βb
=

[
T∑
t=1

Xb′
t Σ

−1Xb
t + λbIkb

]−1

, β̄b = V̄βb

[
T∑
t=1

Xb′
t Σ

−1yt

]
,

where Xb
t = [B1zt, B2zt, ..., Bkbzt] and B1, ..., Bkb are n× n matrices containing the different

link-types in W b, i.e. wb
ij = (B1,ij, ..., Bkb,ij)

′ and A = B = B1βb,1 + ...+Bkbβb,kb .
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D.3 Factor Model Estimation

Consider the dynamic factor model

yt = Λft + ut , ut ∼ N(0,Σu) ,

ft = Φ1ft−1 + ...+ Φpft−p + ηt , ηt ∼ N(0,Ση) ,

where yt is n-dimensional and ft is r-dimensional. The normalization of Geweke and Zhou

(1996) sets Σu = I, Ση = I and takes Λ1:r,· to be lower-triangular with positive diagonal

elements. The VAR(p) for ft can also be written as

f ′
t = xF ′

t Φ + η′t , or F = XFΦ +N ,

where xF
t = (f ′

t−1, ..., f
′
t−p)

′ is rp× 1, Φ = [Φ1, ...,Φp]
′ is rp× r, and the matrices F , XF and

N stack f ′
t , x

F ′
t and η′t along rows, respectively. The factor model permits the state space

representation

yt = [Λ, 0, ..., 0]st + ut , ut ∼ N(0, I) ,

st = Rst−1 + vt , vt ∼ N(0,Σv) ,

where st = (f ′
t , f

′
t−1, ..., f

′
t−p)

′ and vt = (η′t, 0, ..., 0)
′ are rp× 1, and

R =

[
Φ1,Φ2, ...,Φp

Irp−r×rp−r 0rp−r×r

]
and Σv =

[
I 0r×rp−r

0rp−r×rp

]
are rp× rp.

The aim is to find the joint posterior p(Φ, {λii}ri=1, {λi}ni=2|Y ), where Y = Y1:T =

{y1, ..., yT}, λii is the ith diagonal element of Λ1:r,· and λi is the vector containing the remain-

ing free parameters in Λi,·, the ith row of Λ. It is achieved by treating S = S1:T = {s1, ..., sT}
as parameters and obtaining first the posterior p(Λ,Φ, S|Y ). A draw from p(S|Y,Λ,Φ)
is obtained using the Carter and Kohn (1994) Simulation Smoother, while under Uni-

form priors for Φ and Λ, we can analytically derive the conditional posteriors p(Φ|Y, S),
{p(λii|Y, S, λi)}ri=1 and {p(λi|Y, S, λii)}ni=2.

Drawing from p(Λ|Y, S) Given that ut ∼ N(0, I), the measurement equation consists of

a set of independent regressions

yit = f i′
t λ

i + uit , uit ∼ N(0, 1) , i = 1 : n ,
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where f i
t is the vector of factors corresponding to λi, and

yit =

{
yit − λiifit for i ≤ r

yit for i > r
.

Under p(λi) ∝ c, we get

λi|Y, S, λii ∼ N(λ̂i, (F i′F i)−1) , λ̂i = (F i′F i)−1(F i′Y i) ,

where F i and Y i stack f i
t and yit along rows, respectively. Analogously, p(λii) ∝ 1 {λii > 0}

yields

λii|Y, S, λi ∼ N(λ̂ii, (F ii′F ii)−1) , λ̂ii = (F ii′F ii)−1(F ii′Y ii) , truncated to R++

where F ii and Y ii stack fit and yit − f i′
t λ

i along rows, respectively.

Drawing from p(Φ|Y, S) Given that Ση = I is diagonal, the transition equation is also a

set of independent regressions,

fit = xF ′
t Φ·,i + ηit , ηit ∼ N(0, 1) , i = 1 : r .

Under p(Φ·,i) ∝ c, we get

Φ·,i|Y, S ∼ N
(
Φ̂·,i, (X

F ′XF )−1
)

, Φ̂·,i = (XF ′XF )−1XF ′F·,i .

Drawing from p(S|Y,Λ,Φ) The usual formulas for the Kalman filter and Carter and Kohn

(1994) simulation smoother simplify for the particular state space model above. Given an

rp× 1 vector x, let [x]1 = x1:r contain the first r elements, [x]−1 all but the first r elements,

and [x]−p all but the last r elements. Similarly, given an rp× rp matrix X, let

X =

[
[X]1,1 [X]1,−1

[X]−1,1 [X]−1,−1

]
=

[
[X]−p,−p [X]−p,p

[X]p,−p [X]p,p

]
=

[
[X]−p,·
[X]p,·

]
=
[
[X]·,−p [X]·,p

]
,

where [X]1,1 and [X]p,p are r × r, [X]p,· is r × (rp− p) and [X]·,p is (rp− p)× r.

Algorithm 4 (Kalman Filter for Factor Model).

1. Initialize s0|0 = 0 and P0|0 =
∑h

l=0R
lΣvR

l′ for h = 10, say.

2. For t = 1 : T , given st−1|t−1 and Pt−1|t−1,
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(a: Forecast st:) compute st|t−1 and Pt|t−1 as

•
[
st|t−1

]
1
= R1,·st−1|t−1 ,

[
st|t−1

]
−1

=
[
st−1|t−1

]
−p

,

•
[
Pt|t−1

]
11

= R1,·Pt−1|t−1R
′
1,· + Ση ,

[
Pt|t−1

]
1,−1

=
[
Pt|t−1

]′
−1,1

,[
Pt|t−1

]
−1,1

=
[
Pt−1|t−1

]
−p,· R

′
1,· ,

[
Pt|t−1

]
−1,−1

=
[
Pt−1|t−1

]
−p,−p

.

(b: Forecast yt:) compute yt|t−1 and Ft|t−1 as

• yt|t−1 = Λ
[
st|t−1

]
1
,

• Ft|t−1 = Λ
[
Pt|t−1

]
11
Λ′ + I .

(c: Update the forecast for st given observation yt:) compute st|t and Pt|t as

• st|t = st|t−1 +
[
Pt|t−1

]
·,1 Λ

′F−1
t|t−1(yt − yt|t−1) ,

• Pt|t = Pt|t−1 −
[
Pt|t−1

]
·,1 Λ

′F−1
t|t−1Λ

[
Pt|t−1

]
1,· .

Thereby, R1,· = [Φ1,Φ2, ...,Φp], and Λ
[
Pt|t−1

]
1,· =

([
Pt|t−1

]
·,1 Λ

′
)′
.

Algorithm 5 (Carter and Kohn (1994) Simulation Smoother for Factor Model).

1. Run the Kalman filter to get {st|t, st|t−1, Pt|t, Pt|t−1}Tt=1.

2. Draw [smT ]1 from N
([
sT |T

]
1
,
[
PT |T

]
11

)
.

3. For t = T − 1, ..., 0, given draw
[
smt+1

]
1
from N

([
st+1|t+2

]
1
,
[
Pt+1|t+2

]
11

)
, draw [smt ]1

from N
([
st|t+1

]
1
,
[
Pt|t+1

]
11

)
with

• st|t+1 = st|t + Pt|tR
′
1·
(
R1·Pt|tR

′
1· + Σ

)−1
(
[
smt+1

]
1
−
[
st+1|t

]
1
) ,

• Pt|t+1 = Pt|t − Pt|tR
′
1·
(
R1·Pt|tR

′
1· + Σ

)−1
R1·Pt|t .

Analogous comments apply as for Algorithm 2.

D.4 Application Details
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Forecasts At Posterior Mode

p = 1 p = 2 p = 3 p = 4

Forecasts At Posterior Mean

Posterior Mean Forecasts

Figure A-1: Forecasting: Factor Model, Industrial Production Growth
Notes: The plot depicts the percentage difference between the out-of-sample Mean Squared Errors generated by the Dynamic
Factor Model and those generated by an unconditional mean forecast for different choices of p and r and for different types of
forecasts. All forecasts are obtained for industrial production growth.

p = 1 p = 2 p = 3 p = 4

Figure A-2: Forecasting: NVAR(p, 1), Industrial Production Growth
Notes: The plot depicts the percentage difference between the out-of-sample Mean Squared Errors generated by the NVAR(p, 1)
and those generated by an unconditional mean forecast for different choices of p, types of shrinkage and hyperparameter selection
methods. All forecasts are obtained for industrial production growth using the posterior mode.
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