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Anticipating those most at-risk of being acutely malnourished significantly shapes decisions
that pertain to resource allocation and intervention in times of food crises. Yet, the
assumption that household behavior in times of crisis is homogeneous—that households
share the same capacity to adapt to external shocks—ostensibly prevails. This assumption
fails to explain why, in a given geographical context, some households remain more vul-
nerable to acute malnutrition relative to others, and why a given risk factor may have a
differential effect across households? In an effort to explore how variation in household
behavior influences vulnerability to malnutrition, we use a unique household dataset that
spans 23 Kenyan counties from 2016 to 2020 to seed, calibrate, and validate an evidence-
driven computational model. We use the model to conduct a series of counterfactual
experiments on the relationship between household adaptive capacity and vulnerability to
acute malnutrition. Our findings suggest that households are differently impacted by given
risk factors, with the most vulnerable households typically being the least adaptive. These
findings further underscore the salience of household adaptive capacity, in particular, that
adaption is less effective for economic vis-a-vis climate shocks. By making explicit the link
between patterns of household behavior and vulnerability in the short- to medium-term, we
underscore the need for famine early warning to better account for variation in household-
level behavior.
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Introduction

cute malnutrition—what effectively puts children at

greater risk of mortality, stunts growth, and hinders

learning and development (Bhutta et al., 2017; Brown
et al.,, 2020; FAO, IFAD, UNICEF, WFP and WHO, 2022; Headey
and Ruel, 2022; Hoddinott et al., 2008; Medialdea et al., 2021;
Mullen, 2021; Ramirez-Luzuriaga et al., 2021)—remains a per-
sistent problem in Sub-Saharan Africa. Kenya alone reported
942,000 cases of children aged 6-59 months that were acutely
malnourished in the first half of 2022 (IPC, 2022)." As a result of
insufficient nutritional intake and absorption, affected children
typically lose a significant amount of weight in a short period of
time (Brown et al., 2020; WHO, 2013). Changes in the prevalence
of acute malnutrition are widely used as an early warning indi-
cator for nutrition-related emergencies and crises (FewsNet, 2020;
IPC, 2022).

The ability to identify factors associated with changes in chil-
dren’s nutritional status is therefore key for interventions aimed
at reducing household vulnerability. Yet, when prevalence is
gauged to have risen above emergency levels, a humanitarian
crisis has most likely materialized (Hillbruner and Moloney, 2012;
Maxwell et al., 2020). And while the immediate and basic causes
of child malnutrition are well understood, existing famine early
warning mechanisms consistently fail to allocate resources where
they are most needed, precisely because regional and national
nutrition patterns mask meaningful variation at the household
level®.

We consequently adopt a socio-ecological and coupled natural-
human systems lens (Bazilian et al, 2011; Chaffin and
Gunderson, 2016; Folke, 2006; Jefferson et al., 2020; Maldonado
et al., 2020; Moore et al., 2012; Ostrom, 2009; Schlager and Cox,
2018; van Dijk et al., 2020) to study household food security,
defined as “a situation in which all community residents obtain a
safe, culturally acceptable, nutritionally adequate diet through a
sustainable food system that maximizes self-reliance and social
justice” (Hamm and Bellows, 2003, p. 37). Following work in this
vein (Balbi et al., 2020; Dobbie et al., 2018; Kaiser et al., 2020) we
adopt a perspective that emphasizes the inherent complexity of
local food systems—the interaction between household char-
acteristics and behavior, their social, economic and institutional
environment, and the dynamic interplay between the two. For-
mative research has shed light on the key drivers of acute mal-
nutrition risk, yet remains limited in its ability to capture the
‘emergent’ nature of household food security (Becker, 1965;
Dercon and Krishnan, 2000; Mohammed et al., 2023; Takeshima
et al,, 2019; Zingwe et al., 2021)—driven by the interdependencies
between ecological and socio-economic sub-systems (Balbi et al.,
2020; Ostrom, 2009). We offer two key contributions in this
regard. First, we make explicit the salience of household adaptive
capacity and heterogeneous coping strategies. Qualitative case
studies have analyzed the coping behavior of households in times
of food shortages and identified significant differences driven by
income (Berg and Emran, 2020; Corbett, 1988; Watts and Bohle,
1993).> More recently, researchers have examined how hetero-
geneity in latent factors, such as adaptive capacity, interacts with
household behavior and food security outcomes in otherwise
similar livelihood contexts (Pérez et al., 2016; Sam et al.,, 2019;
Wang and Do, 2023). Whereas this small body of research
acknowledges the existence of heterogeneous household behavior,
key limitations include the absence of an analytical, forward-
looking framework, validation, and generalizability (Mayanja
et al., 2022).

Second, researchers typically evaluate how malnutrition rates
are affected by specific risk factors, such as climate or economic
conditions, yet rarely consider situations in which these factors
interact, such as the health and market shocks most recently

2

induced by COVID-19 (see Grace et al., 2022 and Brown et al,,
2020 for recent exceptions). Rather than analyzing individual
indicators that pertain to climate (Barnes et al., 2020; Lipper et al.,
2014; Ndiritu, 2021; Tanner et al, 2015; van der Merwe et al,,
2022), conflict (Anderson et al., 2021; Buhaug et al., 2015; Dunn,
2018; Hancock, 2020; Martin-Shields and Stojetz, 2019), the
economy (Mekasha et al., 2022; Teachout and Zipfel, 2020; WFP,
2020), intrahousehold decision-making (Mohammed et al., 2023)
or the empowerment of women (Aziz et al., 2022; Del Boca and
Flinn, 2012; Rao et al., 2019) in isolation, we account for inter-
linkages across factors that span multiple levels of analysis.

This paper consequently explores how variation in household
adaptive capacity mitigates the combined impact of risk factors,
such as extreme weather and COVID-19-induced market shocks,
on acute malnutrition in otherwise similar communities.* Why,
for instance, are some households more vulnerable to acute
malnutrition relative to others? And does a given risk factor have
the same effect on all households within a geographical context,
or does the nature of risk vary? We address these questions using
an agent-based model in which households are the key actors.
The model is seeded, calibrated, and validated using a mix of
quantitative and qualitative data from West Pokot County in
Kenya, but easily generalizes to other contexts. We begin our
analysis by establishing the fit between the simulated and
observed prevalence of acute malnutrition. We then use the
model to make leading-edge predictions of acute malnutrition
and to conduct a set of counterfactual, “what-if” experiments. The
experiments demonstrate (i) how variation in household adaptive
capacity shapes vulnerability to acute malnutrition in the short-
to medium-term, and (ii) how the nature of risk, holding expo-
sure constant, varies across households. In a final step, we test the
generalizability of the model to other contexts, specifically
neighboring Turkana county.

Our findings suggest that there are considerable differences in
vulnerability to acute malnutrition across wards in West Pokot
over time, necessitating a move to household-level determinants.
The scenario-based analyses, which underscore the salience of
household adaptive capacity, suggest that increasing the ability of
households to adapt to changing conditions can significantly
mitigate the impact of climate, and to a lesser extent economic
shocks. The potential mitigation effect is larger the more vul-
nerable the household. Both in- and true-out-of-sample valida-
tion point to the robustness of our model, underscoring the value
of modeling household-level dynamics for evidence-based deci-
sion-making. Taken together, our analyses and findings con-
tribute to famine early warning by making explicit the link
between household behavior and vulnerability to acute
malnutrition.

The paper is organized as follows. Section “Methods” describes
the study area, data sources and processing, and our evidence-
driven, computational modeling approach. Section “Results”
assesses model fit, based on a set of quantitative performance
statistics, and assesses the validity of leading-edge predictions. In
the section “Scenario-based forecasts”, a set of scenario-based
predictions are used to unpack household-level dynamics in a
counterfactual experimental setup. Section “Discussion” discusses
the implications of our findings for designing effective interven-
tions at the household level.

Methods

Study area. The five study sites located in West Pokot county are
depicted in Fig. 1. The region’s three primary producer groups—
pastoral communities in the “low lands” (Weiwei and Kapchok
wards), agro-pastoralists in higher regions (Riwo and Masool
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Fig. 1 Map of West Pokot County, Kenya. The five wards in our study, colored red, include Chepareria, Kapchok, Masool, Riwo, and Weiwei.

wards), and mixed farmers around the urban center of Chepareria
—are equally dependent on the annual long rains. Environmental
degradation—a result of prolonged dry seasons followed by long
rains and severe floods—is characteristic of the area, with some
90% of maize, the major crop in West Pokot, produced in under
rain-fed areas (NDMA, 2023). Poor management of water
resources poses yet another challenge to development (Joseph
Kanyua, 2020). When droughts diminish food supplies, children
typically suffer from malnutrition and stunting. And when water
resources decline, children cannot wash their hands, fall sick and
become malnourished (UNICEF, 2020). With a majority of
people living in similar dwellings and facing similar health and
sanitary conditions, it is reasonable to conclude that a high degree
of homogeneity exists across household livelihood strategies and
adaptive capacities. Yet, we argue to the contrary, suggesting
instead that households exhibit variation in their ability to adapt
in times of crises—the most vulnerable segments of the popula-
tion in West Pokot effectively lagging behind given limits on
access to critical infrastructure, material, and human resources.

Data sources and processing

Household nutrition surveys. Household nutrition surveillance
data were collected by the National Drought Management
Authority (NDMA) of Kenya at monthly intervals between Jan-
uary 2016 and March 2020.°> The NDMA, in conjunction with
local governments, collects data on the nutrition status of chil-
dren from so-called ‘sentinel sites’—154 localities spread across
the 23 arid and semi-arid (ASAL) counties in Kenya. Each site

tracks 30 households every month, collecting information on a
range of food security measures such as the gender and education
of the head of household, income and water sources, local market
conditions, and coping strategies. Our dataset features N = 14,409
observations of individual children from five sentinel sights in
West Pokot county. Supplementary Table S1 online provides
summary statistics of the household nutrition surveys. The main
anthropometric measure used in this study is the Mid-Upper
Arm Circumference (MUAC).® For validation purposes, the data
is complemented with three to five interviews per sentinel site
(NDMA, 2014). Unlike mass screenings, akin to those conducted
for SMART surveys, NDMA surveillance relies on a small
number of households at the sentinel site level that is ideally
observed repeatedly for a whole year (Maxwell and Hailey, 2020).

Stressors. We combine household nutrition survey data with
open-source information on climate and food price stressors at
equally granular units for West Pokot county (see Hancock, 2020;
Martin-Shields and Stojetz, 2019; Mekasha et al., 2022; Ndiritu,
2021; Teachout and Zipfel, 2020; van der Merwe et al., 2022 for
the significance of these stressors for predicting acute malnutri-
tion). External stressor intensity is conceptualized as monthly
deviations from a long-term average at the ward level. Local
market stressors are calculated on the basis of monthly prices for
maize provided by the NDMA (2023), using the 10-year average
cost of 100 g maize in each local market as a baseline (see Sup-
plementary Fig. S1 online). To model the impact of exogenous
climate stressors, we use the information on the seasonal nor-
malized difference vegetation index (NDVI) from the MODIS
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Fig. 2 Model specification. The left panel depicts the conceptual flow of the computational model; the right panel provides an overview of model dynamics

and variables.

Vegetation Index (MODI13A3) (Didan, Munoz, Solano and
Huete, 2015) (see Supplementary Fig. S2 online). The Supple-
mentary Notes on Data and Model Development online,
respectively, detail data construction and measurement, model
assumptions and the operationalization of key model parameters.

Data matching. We match continuous acute malnutrition rates
(in %) based on MUAC observations of individual children and
additional household covariates at the ward-year level, with
stressors at the county-year level. This yields a total of 21 cov-
ariates for acute malnutrition prevalence. All observations are
geo-coded at the ward level, drawing on geographical information
systems (GIS) and shapefiles from the GADM project (GADM,
2021). For comparability, we translate the continuous acute
malnutrition rates for each ward into the 5-point Integrated Food
Security Phase Classification Acute Malnutrition scale (IPC III/
AMN). The IPC III/AMN classification is an aggregate measure
for acute malnutrition rates and is widely used by the humani-
tarian community to chart escalating degrees of nutrition crisis
(IPC, 2021).

These data enable us to generate a model landscape that closely
approximates the social and geographic context in West Pokot.
Fieldwork was instrumental to “ground-truth” the model and
iteratively fine-tune key model mechanisms (see the Supplemen-
tary Note on Model Development and Supplementary Fig. S3
online).

Computational modeling. The computational model presented
in this paper was developed under the auspices of the Modelling
Early Risk Indicators to Anticipate Malnutrition project (see
MERIAM 2018). We utilize an evidence-driven computational
modeling approach, a more ‘contextualized’ form of agent-based
modeling (ABM) that relies on geographical information systems
(GIS) and empirical validation (see Bhavnani et al., 2020 for a
discussion of the EDM methodology using examples from the
MERIAM project.). The approach combines the methodological
advantages of ABM for capturing complex social dynamics and
causal relationships while maintaining a high degree of ‘real
world’ correspondence to a given study area. As noted by
Bhavnani et al. (2020), these kinds of models have been suc-
cessfully applied to the study of civil violence (Bhavnani et al.,
2014; Weidmann and Salehyan, 2013), social inequality (Rogers
et al,, 2015), neo-patrimonial networks (Geller and Moss, 2008),
party competition (Laver and Sergenti, 2011), legislative politics
(Laver et al., 2011), and crime (Malleson and Birkin, 2012).
Our model, seeded with data on household characteristics,
decisions and behavior, local and more macro-level covariates,
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analyzes the effect of household-level decisions on acute
malnutrition, as well as how households adapt their character-
istics and behavior over time, subject to constraints. Multiple
rounds of theoretical refinement and empirical validation resulted
in the final model design which serves as the best approximation
for the sub-national region of West Pokot, Kenya. The following
section guides readers through different aspects of the model
specification and its development process.

Actors. Individual households comprise the primary actors in the
model. The model is initially seeded with a set of households to
represent the population of the smallest spatial unit for which we
have empirical data, i.e., the ward (ADM3). Within each ward,
households are spatially distributed to reflect population density
and approximate the likelihood of household interaction. The
ward level, therefore, constitutes the spatial unit at which we seed
the model, generate simulated statistics, and validate model
outcomes.

Objective and model sequence. Each household seeks to ensure
nutritional sufficiency by selecting and updating nutrition stra-
tegies subject to constraints. Specifically, each household repeats a
sequence of strategy selection, household action, and adaption in
any given model round. This cycle ensures the endogenous evo-
lution of household strategies in response to the behavior of other
households, as well as changing external circumstances. House-
holds interact in random sequential order such that each
household updates once at a given timestep. Simple linear scaling
relates “model time” to real-time intervals and corresponding
time-varying model inputs with observed model outputs. Inter-
actions in the model are rule-based, with a stochastic decision
process and limited information exchange. The choice of a
nutrition strategy is co-dependent, insofar as each household
observes and seeks to adopt the ‘best performing’ strategy in their
immediate (geographical) context when sufficiency is not
attained. Figure 2 provides an overview of the different variables
that operationalize the cycle by which individual households
update their behavior.

Interactions and outcomes. Household nutritional strategies are
drawn from a set of available livelihood strategies S which
determine whether they produce their own food, draw on local
networks or buy/barter for goods, or some mix thereof. Strategies
are implemented as a vector of three factors—own food pro-
duction, local networks, buy/barter for goods—where (1, 0, 0), for
example, represents a strategy entirely reliant on own food pro-
duction. Based on our fieldwork, we limit the initial strategy set to
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plausible combinations of livelihood strategies in a given local
context.” As such, the semi-arid lands in Turkana would not
enable pastoralist households to engage in agricultural or fishing
activities, effectively limiting alternatives for their own food
production, a priori reducing their strategy set (see the Supple-
mentary Method online for details of an alternative model spe-
cification). Strategies are further constrained by external climatic
and economic conditions X. Climatic shocks, by way of example,
are operationalized as reducing the effectiveness of all strategies
that rely on their own food production by a given factor—the
smaller this factor, the greater the impact of the shock, e.g. factor
0.2 reduces the effectiveness of the given dimension by 80%.

In each interaction, households randomly select a nutritional
strategy s among the available livelihood strategy set S, specific to
each household. As households update their strategies over time.
they may utilize identical strategies, given that successful
strategies are more likely to be selected or replicated relative to
less successful ones. At the extreme, a household may have only
one strategy s in its set, although learning and adaption ensure the
adoption of potentially more successful strategies over time.

The model assumes that the selected nutritional strategy s
together with the household’s nutritional profile /i, determines
food availability at any given time. h captures whether a given
household actually has the ability to produce their own food,
draw on local networks or buy/barter for goods, i.e., a strategy is
only successful and ensures nutritional sufficiency #; if it matches
a household’s abilities. And since the availability of food is
necessary but not sufficient to ensure (child) nutrition, ng is
further constrained by health-related factors h, and monetary
assets h,. We operationalize both as multiplicative factors ([1...
0]), i.e., the more sick the child or the smaller the assets, the
greater the impact on n.

We determine a household’s nutritional sufficiency relative to a
global nutritional sufficiency threshold n,, i.e., if the sum of food
available per child through own production, local networks and
buy/barter for a given household falls under that threshold, it is
considered nutritionally insufficient.® Note that calculating
nutritional sufficiency per child for a given household ensures
that the simulated statistics align with the empirical measure-
ments we draw on. We define acute malnutrition w per
household as sustained insufficiency, i.e., households fail to meet
the nutritional sufficiency threshold 7, over consecutive rounds.
And acute malnutrition prevalence W at the ward-month level
then is simply the aggregate statistics over all households in a
given ward.

Strategy adaption. If a household fails to achieve its primary
objective of ensuring nutritional sufficiency in a given round of
updating, it adapts by selecting a different livelihood strategy s in
the following iteration, based on the behavior of other house-
holds and in response to changing external circumstances.
Household adaptive capacity, or learning A, reflects access to
developmental endowments, such as critical infrastructure and
education, which can prohibit or facilitate the adoption of
alternative strategies. Learning is based on a simple “hill-
climbing” heuristic where actors tend to adopt those livelihood
strategies that are better performing for their local (geographic)
neighbors with rate A, independent of their own nutritional
profile h,.

Model initialization and calibration. Household nutritional pro-
file hy and health-related factors h, are specified using monthly
nutritional surveys (NDMA, 2023), as are the ward-level mal-
nutrition prevalence rates which are based on MUAC. The
number of children in the model directly represents the number
of observations covered in the NDMA survey—14,409

observations in West Pokot (see the Supplementary Note on
Household Nutrition Surveys online for details that pertain to
sample size). We use cross-sectional data on average wealth or
food-related household assets to measure monetary assets, h,,
permitting us to generate a distribution of rich vs. poor house-
holds in a given area. We combine this household-level data with
monthly, ward-level information on extreme weather, specifically
the greenness of terrain (NDVI) and changes in market prices of
maize to empirically specify the contextual factors X.

The simulation is initialized with a random draw among the
entire livelihood strategy set S available to all actors. Model
calibration is then used to estimate household adaptive capacity,
in particular, their learning rate A. The model allows for sub-
optimal behavior in terms of how households evaluate their food
security and choose from a set of available strategies, and
demonstrates how these might lead to different nutrition
trajectories over time. The geographic embeddedness of the
model and use of household survey data allows us to model acute
malnutrition prevalence W at the ward-month level and compare
simulated outcomes to those observed empirically.

A mix of quantitative and qualitative information was used to
refine and “ground-truth” the model. In addition, to survey data,
we conducted interviews and focus-group discussions with
households, community group leaders, and nutritionists in West
Pokot and elsewhere to systematically validate model mechanisms
and set ranges for parameter specifications (see the Supplemen-
tary Method on Qualitative Model Validation online). Model
calibration was used to obtain estimates for parameters that are
(i) of central relevance to the mechanism in question, and (ii)
empirically unobservable.” The household learning rate A ([0.01
0.1]), which dictates the probability that households switch
between strategies, the spawn rate ([0.01 0.1]) for new strategy
generation, and the mode of learning ({“hill-climbing”}) which
determines how households select between strategies together
capture the key, yet unobservable aspects of household decision-
making.

Seeding model inputs and validating model outcomes with
empirical data throughout the simulation ensures close corre-
spondence with real-world dynamics and effectively captures
some of the key trade-offs in the behavioral choices that
households make to ensure nutritional sufficiency. More
specifically, the model captures (i) how strategy selection is
constrained by household capacity, (ii) how overall coping
strategies are influenced by combinations of external, climatic
and economic, constraints, and (iii) how variation in learning or
adaption to best-performing strategies shapes outcomes. It is
precisely in this regard that we try to capture the inherent
complexity of household behavior and decision-making, identify-
ing household strategies S or learning rates A that best capture
observed empirical dynamics.

Results
Model validation. In assessing model performance, both for
calibration and validation, we rely on systematic estimations of
bias—such as mean-squared difference. In addition, metrics for
predictive accuracies—such as the Fl-score and Hamming loss
function—allow us to assess the degree to which empirical var-
iation in prevalence rate (categories) can be explained by the
computational model. We use these measures of in-sample
validity as joint indicators of our model’s ability to provide valid
predictions (see the Supplementary Method on Quantitative
Model Validation online).

In addition, we test the performance of our model on data it
was not initially trained on. This includes additional validity tests
using standard split-sample approaches but also ‘true’ out-of-
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Table 1 Summary of validation exercises and quantitative model performance statistics.

Validation Type Sample Test Metric Value Value Range
Calibration (In-Sample) West Pokot, 2017-2018 F1 0.72* 0-1
Hamming Loss 0.25 1-0
RMSD 0.071* >0
Temporal Split (Out-of-Sample) West Pokot, 2017 F1 0.55* 0-1
Hamming Loss 0.45 1-0
RMSD 0.01* >0
West Pokot, 2018 F1 0.51* 0-1
Hamming loss 0.49 1-0
RMSD 0.02% >0
4-Month Leading-Edge (True Out-of-Sample) West Pokot, 2019 (Jan.-Apr.)  F1 0.72* 0-1
Hamming Loss 0.26 1-0
RMSD 0.02% >0
West Pokot, 2019 (May-Aug.) F1 0.67* 0-1
Hamming Loss 0.32 1-0
RMSD 0.04* >0
West Pokot, 2019 (Sep.-Dec.) F1 0.33 0-1
Hamming Loss 0.56 1-0
RMSD 0.03* >0
Generalizability (True Out-of-Sample) Turkana, 2017-2018 F1 0.52* 0-1
Hamming Loss 0.48 1-0
RMSD 0.14 >0

scores are reported as a complement to F1 scores.

The joint validity criteria include systematic estimations of bias (RMSD) and metrics for predictive accuracy (multiple category F1, Hamming loss score). RMSD measures the degree of deviation of
predictions from observed values, with higher values indicating a larger deviation. The cut-off value for this study is 0.2, such that if the RMSD is smaller relative to this value the prediction is valid. Taking
into account the imbalanced distribution of observations and the multi-category classification, we find the random prediction baseline in these cases to lie between F1 values of 0.3 and 0.4. We, therefore,
set our joint validity criteria such that a model with F1> 0.5 for internal validity predictive power is successful. Validation samples that fulfill these criteria are marked with an asterisk. Hamming-loss

malnutrition prevalence
(MUAC < 135mm)

no data
0-3%
3-10%
10-15%
15-30 %
> 30 %

BEEO00

simulated malnutrition
prevalence

no data
0-3%
3-10%
10-15%
15-30 %
> 30 %

BEEO00

Fig. 3 Observed vs. simulated malnutrition prevalence in West Pokot (2017-18). The left panel depicts observed malnutrition prevalence; the right panel
depicts simulated malnutrition prevalence. Prevalence is measured using the MUAC measure, and is displayed at the ward-level.

sample testing. Specifically, we will rely on leading-edge
predictions for 4-month prediction horizons. This approach is
designed to estimate short-term future malnutrition outcomes,
capturing the likely magnitude of a future crisis and informing
stakeholders about appropriate standard short-term responses. In
a final step, we test model performance in neighboring Turkana
county to assess its generalizability to other contexts.

6

Table 1 provides a summary of validation exercises and
corresponding model performance statistics.

In-sample validation

West Pokot, calibration: In-sample validation metrics are calcu-
lated for a comparison between the distribution of predicted
categories vs. outcomes from empirical data. Figure 3 illustrates
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observed prevalence in the four study areas in West Pokot
between 2017 and 2018, using the five-point IPC classification
scheme (left picture) and simulated prevalence using the opti-
mized computational model (right picture).

The model produces unbiased predictions of observed acute
malnutrition prevalence—also at highly granular spatial units
(RMSD = 0.01). To systematically assess bias, we use the average
deviation of model predictions from observed malnutrition
prevalence, with larger average (root-mean-square) deviations
(RMSD) indicating larger bias. In the absence of a standard cut-
off, the value for this study is set at 0.2, i.e. if the RMSD is smaller
relative to this value, the prediction is valid. In addition to
systematic estimations of bias, we analyze predictive accuracy to
assess if the model can successfully predict malnutrition prevalence.

We assess model accuracy based on the macro Fl-score, ie. the
average of the balanced mean between precision and recall for each
category on the five-point IPC III scale. Macro-F1 scores range
from 0 to 1, with 1 indicating a perfect classifier. The F1-value of
0.72 indicates that our computational model has a low mis-
classification rate, despite the fact that a five-point classification
into IPC III categories is more difficult relative to simulations of
binary outcomes, for instance, if there is acute malnutrition or not.
If the number of observations per category is small, and their
distribution is imbalanced, with very few observations in higher
categories, the model classifier can get a low mis-classification rate
simply by choosing the majority class."’ To account for this, we use
a second metric for model accuracy, that compares the fraction of
categories that are incorrectly predicted to the total number of
predicted categories. Hamming loss scores (HLS) range from 0 to 1,
with 0 indicating a perfect classifier. As depicted in Fig. 3, we
identify one incorrect classification in four sites with a Hamming
loss score of 0.25. Just like the Fl-score, this indicates that model
predictions of acute malnutrition are valid.

Out-of-sample validation

West Pokot, temporal split: Monthly data collected by NDMA
permit us to divide the sample longitudinally to compare model
results for the year 2017 to those for 2018."' We compare internal
validity based on the split sample to internal validity based on the
full, “baseline” sample discussed in the previous section. Obser-
vations from 2017 are used to train the computational model.
Model performance when optimized for the training data is lower
but comparable to that of the full baseline model (RMSD = 0.01,
F1 =0.55, HLS = 0.45). We then test the model against data for
the same wards as before, but now for observations in the sub-
sequent year, i.e., 2018, and find that the model’s overall per-
formance is robust, albeit with a slight drop in performance and
accuracy (RMSD = 0.02, F1 =0.51, HLS = 0.49).

The difference in the performance of the baseline model and
the out-of-sample models serves as an indicator of the model’s
sensitivity to different data inputs. Further, it tells us something
about the trade-off between an internally valid model that
explains a particular empirical pattern well, and an externally
valid model that explains variation beyond the particular case it
was optimized for.

“True” out-of-sample validation

West Pokot, leading edge: Excellent longitudinal coverage by the
NDMA in Kenya makes it possible to optimize our model “close”
to the prediction period and generate leading-edge predictions of
acute malnutrition rates to its true out-of-sample predictive
power. To arrive at the leading-edge predictions, we train the
model on a subset of the data in the preceding year ¢ and then
forecast acute malnutrition rates for the ¢+ 4 months window.
After 4 months we record the forecast error, re-estimate the
model, and make a new forecast, and so forth. The result is a set

of “bootstrapped” forecast errors that provide a robust assessment
of model performance for each time horizon and prediction cycle.
To assess the sensitivity of our predictions, we use two alternative
time-frames, i.e. 2- and 4-month prediction windows.

Figure 4 illustrates the 4-month leading-edge predictions for
West Pokot in 2019, designed to maximize comparability to other
forward-looking analyses such as ML1 in Fews Net forecasting
cycles. For each of the three prediction periods, observed acute
malnutrition prevalence rates (left side) are compared to
simulated prevalence rates (right side) (see Supplementary Fig.
S4 online for model estimations with a 2-month forecasting
window and Supplementary Table S2 online for estimations with
both 2-month and 4-month prediction windows).

We also evaluate the joint in-sample and out-of-sample
predictive power for each prediction period, as depicted in Fig.
5. The computational model performs best in the first prediction
period, January to April 2019 (RMSD = 0.03). After a minor
decrease in accuracy for the second prediction window (May-July
2019), the last set of predictions (September-December 2019) is
indicative of the weakest model performance.

Here, we observe a significant drop in model accuracy
(F1 =0.43, HLS=0.56), with an otherwise high degree of
quantitative agreement (RMSD = 0.03). Closer inspection reveals
that this is an artifact of re-classifying continuous malnutrition
prevalence rates per ward (in %) into the 5-point IPC III AMN
scale. When aggregating observations, metrics may coincidentally
fall into different IPC III categories. Given that we only evaluate
five wards, a mismatch in one or two categories drastically lowers
the overall predictive accuracy of the model.

Turkana, sensitivity analysis: Like West Pokot, neighboring
Turkana is among the 23 so-called arid and semi-arid (ASAL)
counties in Kenya that are especially prone to extreme weather
and climate-induced disasters. The impact of drought, attribu-
table to a delayed onset of the annual long rains in March, and the
uneven spatial and temporal distribution of rainfall until August,
with a high risk of floods, are felt across both counties. Yet,
Turkana is a purely pastoralist region. Instances of cattle raiding
and resource-related conflicts are more frequent, relative to the
predominantly agro-pastoral West Pokot. Taking into account
the differences in livelihood and conflict prevalence by means of
alternative parameter specifications (see the Supplementary
Method on an Alternative Model Specification online), we use
similar household-level data from the NDMA to assess the sen-
sitivity of the model simulations.

Figure 6 compares observed acute malnutrition prevalence
rates (left side) to the simulated values (right side). We find that
the simulated values capture a significant portion of the variation
in observed acute malnutrition prevalence in Turkana County
and generalize well from one to another sub-national context in
Kenya, albeit with quantitative model performance significantly
lower relative to West Pokot (see the Supplementary Method on
Assessing Model Fit in Turkana online).

This occurs for two reasons. First, there is stark, unforeseen
variation within Turkana, with some districts facing unforeseen
nutritional crises and others much less affected. It is difficult for
any model trained on past observations, including ours, to predict
acute malnutrition rates that have not been witnessed in the past.
Figure 6 highlights, in particular, that the model does not
correctly account for the unusually high prevalence rates in the
districts of Lokichar and Lokiriama/Lorengippi. And second,
performance is lower in Turkana because variation in key
indicators such as seasonal conditions cannot fully account for
differences across wards, suggesting that other, unobserved
dynamics contribute to the greater vulnerability of pastoralist
livelihoods in Turkana relative to West Pokot.
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Leading-Edge Out-of-Sample: West Pokot Jan.-Apr. 2019
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15 - 30 %
>30 %
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simulated malnutrition
prevalence
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0-3%
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Leading-Edge Out-of-Sample: West Pokot May-Aug. 2019

malnutrition prevalence
(MUAC < 135mm)

no data
0-3%
3-10%
10 - 15 %
15 - 30 %
>30 %

BEREO0

simulated malnutrition
prevalence

no data
0-3%
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> 30 %

BEEEO0

Leading-Edge Out-of-Sample: West Pokot Sep.-Dec. 2019

malnutrition prevalence
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> 30 %
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simulated malnutrition
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0-3%
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10-15%
15-30 %
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Fig. 4 Observed vs. simulated 4-month leading-edge predictions of malnutrition prevalence in West Pokot (2019). Top panel: Jan.-Apr. Middle panel:
May-Aug. Bottom panel: Sep.-Dec. Prevalence is measured using the MUAC measure, and is displayed at the ward-level.

Scenario-based forecasts. Existing early warning mechanisms
typically assume that households are endowed with a baseline
ability to adapt to changing environmental conditions. However,
this may not be the case for the poorest households, as they may

have no access to critical infrastructure or education. To assess
variation in household adaptation, we compare three scenarios
that respectively account for settings where the household ability
to learn (1) new strategies is either optimized to fit data on acute
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Fig. 5 West Pokot: joint validity scale. Simulations with both high in- and out-of-sample validity, measured by F1, are located in the upper-right hand
quadrant.

malnutrition prevalence simulated malnutrition
(MUAC < 135mm) prevalence

[] nodata [] nodata

] 0-3% ] 0-3%

@ 3-10% @ 3-10%

B 10-15% Bl 10-15%

Bl 15-30% Bl 15-30%

B >30% B >30%

Fig. 6 Observed vs. simulated malnutrition prevalence in Turkana (2017-2018). The left panel depicts observed malnutrition prevalence; the right panel
depicts simulated malnutrition prevalence. Prevalence is measured using the MUAC measure, and is displayed at the ward-level.

malnutrition (baseline), constrained (A decreased by 50%), or yields and the ability for households to replenish stocks. We
enabled (A increased by 50%). We simulate the household’s ability model this as equivalent to an early onset of the lean season,
to learn when faced with climate and economic shocks, due to which we expect to reduce household availability of food
COVID-19 restrictions. from own production by 20%.
Together with nutrition experts, who helped to validate and

refine parameter specifications for each scenario, putting forward Economic scenario: Particularly considering the potential
the following assumptions (see Supplementary Method on impact of COVID-19, we identify two possible mechan-
Counterfactl}al Experimentg and Supplementary Table S4 online isms: (i) restrictions to mobility and shutdowns which
for an overview of assumptions). could limit the ability to switch to replacement strategies

(especially working in cities); (ii) restrictions to export/

Climate scenario: In 2020 a long rain season was expected, \ . > ! °
import of food (meat in particular). In this scenario, we

which from early summer onward could affect harvest
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Fig. 7 Counterfactual scenarios for select wards in West Pokot (2020). The top panel depicts simulated malnutrition prevalence for climate, Covid-19,
climate & Covid-19 shocks from Apr.-Jul. by ward. The bottom panel maps simulated malnutrition prevalence as a result of shocks for the same set of

wards. In both panels, prevalence is measured using the MUAC measure.

assume that the ability of households to generate income
is reduced by 50%.

Given NDMA data coverage to March 2020, the scenario-based
forecasts with a 4-month prediction horizon cover the period
between April and July 2020. Figure 7 illustrates the simulated
acute malnutrition prevalence rates using the fully validated
computational model when faced with different combinations of

10

external stressors. The results suggest that already vulnerable
wards (and households) in West Pokot tend to become more
vulnerable to additional shocks, with the most severe impact in a
combined climate and economic scenario. Our findings also
suggest that increasing the ability of households to adapt to
changing conditions can significantly mitigate the impact,
whereas constraining this ability considerably amplifies the
impact of the shock. The potential mitigation effect is larger the
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more vulnerable the household. Lastly, strategy adaption is less
effective for economic vis-a-vis climate shocks, given constraints
on the number of alternative strategies a household can pursue.
Supplementary Fig. S8 online presents the same projections for
two other wards covered by the NDMA data, further under-
pinning the robustness of the model.

Discussion

Our analysis affords a conceptually richer account of acute mal-
nutrition, relative to existing early warning mechanisms. Corre-
lational models continue to provide predictions at the level of
more aggregate spatial and temporal units, effectively masking
variability at more granular levels, i.e., across households within
the same communities. Adding to the problem, measures used to
assess the severity of a crisis—such as the widely-used five-phase
IPC food security/acute malnutrition scale—tend to be highly
aggregated and largely unsuitable for generating household-level
estimates, all the more so given their small sample sizes and
correspondingly high levels of sampling variability (Guha and
Chandra, 2021). Thus, while composite measures of acute mal-
nutrition prevalence typically assign the same weights and vari-
ables to locations within a region (Browne et al., 2014; d’Errico
and Pietrelli, 2017; Grace et al., 2022), we underscore the pivotal
role of that variation in household behavior plays, modeling
differences in the capacity of households to adapt.

Considering the quantitative model performance statistics and
the joint criteria for success, we are confident that the model
captures key dynamics of interest in West Pokot, and generalizes
well to the Turkana case. That said, we find considerable differ-
ences in household behavior and vulnerability to acute mal-
nutrition across wards in the two study sites. The set of livelihood
strategies households use for coping appears to be more narrow
in Turkana relative to West Pokot. Purely pastoralist livelihoods
and an ongoing nutrition crisis constrain the overall diversity of
household strategies—i.e., the mix of available strategies across all
households. Low diversity in coping strategies suggests that
learning (or adaption) rates were lower in Turkana relative to
West Pokot—the broader implication being that it is not neces-
sary for each household to diversify its nutritional strategy, but
rather have access to a more diverse set of strategies. Our
scenario-based analyses further underscore the salience of
household adaptive capacity. Here, we demonstrate that
increasing the ability of households to adapt to changing condi-
tions can significantly mitigate the impact of climate, and to a
lesser extent economic shocks. We find that external shocks of
low magnitude, for instance, small shifts in precipitation patterns,
disproportionally affect regions with low diversity of household
strategies relative to those with high diversity. In other words,
there exist potentially strong feedback loops or cascading effects
between the overall diversity of household strategies and seasonal
shocks that, all else equal, begin to explain drastic year-to-year
changes in malnutrition prevalence across households. These
findings closely align with the qualitative insights derived from
fieldwork conducted in both regions, effectively highlighting the
importance of household strategies and adaptive capacity for
mitigating risk.

Our effort builds upon existing approaches to understand
and forecast acute malnutrition. The combination of compu-
tational modeling, fine-grained nutrition and open-source data
enables scalable, evidence-driven prediction at low cost. The
approach is also in line with recent calls to view household
behavior as part of a complex adaptive system—characterized
by co-evolution, the integration of system components at dif-
ferent units of analysis, feedback loops, and nonlinear scaling
processes (Bhavnani et al, 2020; Egli et al., 2019; Fraccascia

et al., 2018; Naghshbandi et al., 2020; Nasrazadani and Mahsuli,
2020; Siegenfeld and Bar-Yam, 2020).

Yet, our work constitutes a first step in this direction, as it
raises difficult questions about the nature and consequences of
household behavior and adaptation in times of food crisis. Under
what circumstances, for instance, are households more likely to
adapt their behavior? Is adaptation more likely to be an inde-
pendent or collective endeavor, and with what tradeoffs? And
what specific measures can be implemented to enhance learning
and behavior change? Given that households exhibit variation in
adaptive capacity—the latter a prerequisite for community resi-
lience to acute malnutrition—it is imperative to design inter-
ventions that more effectively foster opportunities for behavioral
changes at the household level.

As the international community increases the spending on
emergency food aid each year (Kinyoki et al., 2020), with some
50% of global funds in 2020, approximately $90 billion dis-
tributed to nine Eastern African countries, food shortages recur
with increased frequency and child acute malnutrition remains
widespread (Global Nutrition Report, 2020; Young and Marshak,
2018). Given the endemic nature of the problem, our premise in
this paper is altogether straightforward. We argue for more
effective targeting of households at-risk and timelier nutrition
interventions, with a focus on prevention. Such targeted,
evidence-driven intervention may only be achieved if household-
level characteristics and heterogeneity in behavior and coping
strategies are adequately captured (Guha and Chandra, 2021;
Wang et al,, 2021).

Data availability

All datasets used in the current study are available via the Har-
vard Dataverse, a FAIR-compliant data repository: https://doi.
0rg/10.7910/DVN/3NKIKL. Restrictions only apply to the avail-
ability of the NDMA household-level data. To safeguard privacy,
we provide these data at the ward level, matching the spatial level
of aggregation used in this study.
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Notes

Acute malnutrition is a specific form of undernutrition that is commonly defined as
“the combination of wasting and edematous malnutrition, i.e. swelling of the feet and
sometimes the lower limbs” (FewsNet, 2006, p. 6).

Research on acute malnutrition broadly classifies risk into three categories: (i)
immediate causes such as dietary intake and disease at an individual level; (ii) basic
causes relating to political and economic conditions at sub-national, country, or
international levels; and (iii) under- lying causes such as food security, hygiene
environments, care practices, coping strategies and unobservables like adaptive
capacity (Mayanja et al,, 2022; WHO, 2021; Young, 2020).

As such, “the poorest households may not have the same options open to them as
those which are better off; for example, they may find it more difficult to obtain
credit, may have fewer assets to liquidate, or be more constrained by high
dependency ratios in labor migration” (Corbett, 1988, p. 1102).

4 Adaptive capacity is considered to be a “defining feature of complex systems” (Folke,
2006; Nelson et al., 2020).

Note that our analysis is constrained by nutrition data availability due to COVID-
19—in light of travel restrictions and government guidance on social distancing,
NDMA suspended their data collection at the end of March 2020. Since July 2020
NDMA has been using the so-called Family MUAC approach, shifting field monitors’
responsibilities insofar as their main role with this approach is to coach and supervise
caregivers, rather than taking the measurements themselves (SOAM, 2020).

In times of crisis, the MUAC is often used as the sole anthropometric admission
criterion for nutrition programs, taking advantage of its simplicity of use (Collins
et al., 2006; Fabiansen et al., 2020). In line with the standard cut-off points suggested
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by the WHO (2013), we measure acute malnutrition using the most conservative
threshold value, risk of acute malnutrition (MUAC < 135 mm).

We also allow new, similar strategies to ‘spawn’ endogenously with a small rate
throughout the simulation to allow for other, potentially more optimal strategies to
emerge.

The nutritional sufficiency threshold n, thus serves to calibrate the overall scale of
malnutrition prevalence to the observed empirical levels.

We derive results from a parameter sweep with ~ 60,000 parameter combinations
optimized for fit with observed prevalence rates as reported by NDMA. Note that the
comparatively small sample of four wards is a direct consequence of NDMA’s
sampling strategy. Seasonal variation approximated from NDVI data (X); no further
economic or climate shocks; simulation duration of 365 days simulated in 1000 steps;
local household learning (“hill climbing”) with spawn rate 0.03 and learning rate
0.095; household characteristics and health-, food-intake factors (h,, hy,) seeded from
survey data; categories used for household assets h, reflect diversity of monetary
assets in poor vs. rich households.

10 Correct classification of higher observed malnutrition prevalence, especially Phase 5,
is difficult based on the model. This tendency is already visible in Fig. 3, in the
pastoral region of Sigor (simulated Phase 2, observed Phase 4).

Note that we consider a full year, i.e., a full seasonal cycle. Given that we analyze a
representative sample of wards over time, factors such as the overall dispersion of
MUAC or the household behavior that produces it are closely comparable. The
external distribution of shocks or seasonal patterns may vary between years and thus
influence out-of-sample predictive power.
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