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Abstract

Achieving the goals of the Paris Agreement and of climate neutrality by 2050 in the
European Union will require mobilizing financial investments towards clean energy innova-
tion. This study examines the role of internal finance (cash flows and cash holdings) and
financing constraints for innovation in energy technologies. We construct a dataset for 1,300
European firms combining balance-sheet information and patenting activities in renewable
(REN) and fossil-fuel (FF) technologies and estimate the sensitivity of patenting activities
to firm’s internal finance. We use count estimation techniques and control for a large set
of firm-specific characteristics and market developments in REN and FF technologies. We
find that patenting activities of firms specialized in REN innovation are significantly more
sensitive to a shock in cash flows than firms specializing in FF innovation. Hence, our results
emphasize that innovative firms in clean energy may be particularly vulnerable to financing
constraints. We discuss the implications of these results for energy transition policies aiming
to redirect finance towards clean energy R&D.
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1 Introduction

The ability to achieve sizeable greenhouse gases emissions reductions to address climate change

without compromising future economic growth is linked to the deployment and development

of clean technologies. The energy sector is key in this respect, as emissions from electricity

production are responsible for 40% of worldwide carbon emissions (IEA, 2015). Decarbonizing

the energy sector implies shifting away from fossil-fuels, such as coal, oil and gas, which today

still accounts for 70% of worldwide electricity production and 80% of global energy investments.

Despite recent developments in renewable energy, in particular in wind and solar energy, ex-

perts worry that the current pace of innovation efforts in renewable technologies may not be

sufficient to achieve the commitment of the Paris agreement to limit global temperature rise be-

low 2 degrees Celsius (IEA, 2017). While technological advances are needed to improve further

efficiency and reduce plant-level integration costs of renewables, the share of renewable (REN)

energy in global corporate energy R&D spending remains below 15% (FS, UNEP and BNEF,

2016) and most innovation efforts still tend to be directed to existing incumbent fossil-fuel (FF)

technologies. Mobilizing more finance towards clean energy is thus key for the energy transition

as recent climate models estimate that the low-carbon energy investment gap to achieve the 2

degrees target of the Paris Agreement represents about one-quarter of annual total energy in-

vestment (McCollum et al., 2018). In Europe, the new European Commission sees technological

innovation and R&D in clean energy as important drivers for achieving the objective of climate

neutrality by 2050 (European Commission, 2020) and stresses the importance of making finance

flows consistent with the low-carbon pathway. According to Polzin and Sanders (2020), Europe

still faces a lack of investments to promote R&D in novel clean energy technologies, such as

energy storage, energy-efficiency, decentralized renewable energy, or advanced biofuels and they

strongly advocate for a need to “move (some of) the trillions to where they are most needed to

facilitate the energy transition in Europe” (Polzin and Sanders, 2020 p.2).

Theoretically, several market failures explain why firms tend to underinvest in the develop-

ment of renewable energy technologies. First, just like other forms of R&D, firms innovating

in REN technologies cannot fully appropriate the returns on their innovation – this is the so-

called ‘knowledge externality’. Second, in the absence of environmental policy setting a price

on carbon emissions, the ‘environmental externality’ implies that firms have sub-optimal incen-
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tives to develop further these low-carbon technologies. Third, path-dependency in innovation,

a form of intertemporal knowledge externality, leads technical change to be directed towards

FF technologies, where most innovation took place historically (Acemoglu et al., 2012; Aghion

et al., 2016; Noailly and Smeets, 2015). Finally, an additional market failure that has received

less attention in the energy R&D literature is the prevalence of credit constraints to finance

R&D. All R&D investments are theoretically susceptible to financing constraints due to intrin-

sic characteristics of the R&D process (i.e. uncertain outcome of the R&D process, the lack

of collateral values and information asymmetries between investors and innovating firms; Hall

and Lerner, 2010). An open question, however, is whether financing constraints may be more

severe for R&D in REN than in FF technologies, thereby affecting not only the rate but also the

direction of innovation. There are several arguments why financing R&D may be more difficult

for firms innovating in REN (vs. FF) technologies. First and foremost, the technologies present

different characteristics substantiating distinct risk-profiles for investors: REN technologies are

younger, less mature, and may require higher irreversible sunk costs than their fossil-fuel coun-

terparts. In addition, due the presence of the environmental externality, renewable technologies

are highly dependent on policy support, which tends to fluctuate over time thereby generating

additional risks for investors. Finally, firms undertaking REN innovation may be smaller and

younger than other firms and may lack the track record to attract financing.

In this paper, we provide novel empirical evidence on the importance of financing sources -

and in particular internal finance in the form of cash flows and cash holdings - for innovation

in REN and FF technologies. So far, the literature on energy R&D has mainly focused on

the role of energy prices, market developments and environmental policies (Popp, 2002; John-

stone et al., 2010), and more recently on path-dependency in renewable innovation (Noailly

and Smeets, 2015). By contrast, the role of financial constraints in commanding energy in-

novation has received little attention in previous research (Howell, 2017). By studying how

the availability of internal finance may differentially affect R&D investments in renewable and

fossil-fuel energy technologies, our study aims to contribute to a new research agenda on the

role of financing constraints on the direction of innovation - so far, the evidence has remained

mainly anecdotal and in sectors outside energy.1 Our study also innovates by explicitly com-
1Abraham (2011) note for instance that the pharmaceutical industry has become locked into innovation in

drugs which are less complex and provide easier returns than other areas of research, such as diagnostics or
life-style remedies.
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bining the environmental economics literature with the well-developed framework in corporate

finance on the role of finance for innovation (Hall and Lerner, 2010; Brown et al., 2012). In

line with these studies, our econometric approach estimates the R&D investments’ sensitivity

to internal financing (e.g. cash flows) for various types of firms. Our analysis relies on an

unique dataset combining balance-sheet data with data on firm-level innovation activities (as

measured by patents) in renewable and fossil-fuel energy technologies for a sample of 1,300

European firms. Our results suggest that patenting activities of innovating firms specialized in

renewable technologies are more sensitive to shocks in cash flows and cash holdings than firms

specializing in FF innovation - this result holds over the 1995-2009 period which corresponds to

the period of early development of renewable energy technologies. The higher dependence on

internal finance for REN firms suggests that these firms may be more vulnerable to financing

constraints than FF firms. The significant difference between REN and FF firms remains robust

even when looking at specific sub-samples of large and mature firms, which would be expected

to be less subject to financing constraints.

Our study is structured as follows. Section 2 reviews previous literature on both corporate

finance and environmental economics on the financing of (clean) innovation. Section 3 presents

our empirical framework and Section 4 describes the data. Section 5 reports our results and

Section 6 concludes and discusses implications for future energy transition policies aiming to

address the investment gap in clean energy R&D.

2 Previous literature

There is a large body of theoretical and empirical work focusing on the role of financial factors

and liquidity for R&D investment. Firms typically finance their investments by having recourse

to both internal (current cash flows and cash holdings) and external finance (debt and stock

issues). In the specific case of R&D investments, several factors explain why access to external

finance may be particularly difficult (Hall and Lerner, 2010). First, the majority of R&D

expenditures concerns wages of R&D workers, rather than capital investment. This implies

that banks often cannot claim collaterals in return for R&D investment. First-time innovators

will also often lack a valuable asset that can serve as collateral. As a result, the availability

of external (debt) finance is either limited or very costly. Second, due to the highly uncertain

4



nature of the outcome of the innovation process, so is its financial return. The high degree of

uncertainty around innovation makes it always difficult to know in advance whether a firm will

be successful at innovating or not. As a result, the risk premium charged on external sources

of finance is often prohibitively high. Finally, market failures affecting investments also play a

role for R&D investment. There exists asymmetric information between the provider of finance

and the innovator, since the latter tends to have more information about potential success or

failure. As a result, the high-success firms will tend to exit the market as they cannot signal

their quality to financiers. Further, moral hazard may induce innovators to spend money on

more risky projects than agreed upon ex-ante with the financier. Anticipating such behavior,

financiers could limit the availability of external financing, or offer it at higher cost.

Taken together, these problems imply that firms wanting to invest in R&D activities will

typically first deplete their internal cash flow and possibly part of their cash stocks before turning

to external sources of financing. A corollary of this result is that firms that are financially

constrained will tend to be more sensitive to shocks in the supply of internal finance: for these

firms, an expansion of cash flow will be positively associated with more R&D. These firms will

also be more likely to reduce funds from their cash holdings in order to smooth R&D investment:

cash stocks are then used as a ‘buffer’ to avoid firing R&D workers during downturns (Brown

et al., 2012). The importance of internal finance for R&D has generated extensive work in the

corporate finance literature to test empirically the R&D-cash flow sensitivity. In reduced form

estimation, the theoretical prediction is that an increase in cash flows and a decrease in cash

holdings should be associated with an increase in R&D investment, especially for firms that

are financially constrained. Himmelberg and Petersen (1994) find an economically large and

statistically significant relationship between R&D and internal finance in a panel of small firms

in high-tech industries, a group of firms particularly likely to face significant internal finance

constraints. Mulkay et al. (2001) report a much stronger R&D-cash flow sensitivity for U.S.

firms relative to French firms. Brown and Petersen (2009) find significant effects of cash flow on

R&D investment for young, but not mature firms, in a panel data of 1,347 U.S. publicly traded

firms in high-tech industries over the 1990-2004 period. Brown et al. (2012) find similarly a

positive link between R&D and cash flow for a sample of publicly listed companies in Europe,

especially in the group of firms most likely to face binding financing constraints (younger,
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smaller and low-dividend firms). Loof and Nabavi (2016) relate, as we do, cash flows and cash

holdings to innovation as measured by patents for a sample of exporting firms in Sweden over

the 1997-2007 period. They estimate a positive relationship between cash flow and patenting

activities and a negative association between cash holding growth and innovation for high-tech

firms, suggesting that these firms may be particularly financially constrained.

Next to the important role of internal finance, the literature also acknowledges the role of

external finance for R&D and in particular equity financing. By contrast to debt financing,

equity does not require collateral, and, unlike providers of debt, equity investors share in the

upside of the investment. This makes external equity cheaper than external debt. Looking at

publicly traded firms, Brown and Petersen (2009), Brown and Petersen (2011) and Brown et al.

(2012) all demonstrate the sensitivity of small, young, and technology-intensive firms’ R&D not

only to internal finance but also to external equity financing constraints.2 Taken together, the

corporate finance literature sketches a financing hierarchy: first, internal finance is depleted,

followed by external equity financing, possibly followed by external debt financing.

So far, there is no evidence in the literature on the cash flow-R&D sensitivity in the context

of energy firms. As energy technologies are highly capital-intensive and require large upfront

and often irreversible investments, investments in energy exhibit very different risk profiles

than investments in other sectors. Within the energy sector, REN and FF technologies also

present distinct risk profiles, as investments in renewable energy face specific challenges. First,

REN technologies still largely rely on policy support as government intervention is justified in

this sector due to the environmental externality. Yet, the risk that policies supporting clean

energy are subject to change makes it challenging for investors, who might hold an investment

under successive governments. Looking at the determinants of venture capital financing in the

renewable energy sector using data on deals in the ‘clean tech’ industry for 26 countries over the

period 2005-2010, Criscuolo and Menon (2015) find that national policies designed with a long-

term perspective (e.g. feed-in tariffs) are associated with higher investment levels compared to

more short term fiscal policies (e.g. tax incentives, rebates).

Second, REN technologies present higher technological risks than traditional FF ones. Re-

newables usually require higher upfront capital investments. Nelson and Shrimali (2014) esti-
2The established literature in this field mostly focuses on samples of publicly traded firms. In this context,

the typical definition of a small firm is one with less than 500 employees, whereas a young firm is one whose IPO
took place less than 15 years ago.
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mate that upfront capital costs represent 84-93% of total project costs for wind, solar and hydro

energy (compared to 66-69% for coal and 24-37% for gas). More importantly, technologies that

are still in an early stage of development exhibit high failure rates. Ghosh and Nanda (2010)

and Nanda and Fleming (2015) discuss how entrepreneurs in renewables need risk capital, not

only in early stages, but also later on to demonstrate that the technology can work at scale.

This is less of a problem for FF technologies that are well-established in the sector. Howell

(2017) estimates the impact of being awarded an early-stage research grant by the US Depart-

ment of Energy on revenues, innovation and survival of small high-tech firms in various sectors

related to energy. She finds that firms awarded a grant were more likely to receive subsequent

venture capital and to increase their patenting activities and revenues. Her results show evi-

dence of a larger effect for younger firms and for firms in less mature technology areas such as

hydropower (wave and tidal), carbon capture and storage, building and lighting efficiency and

electric vehicles compared to energy technologies in coal, natural gas, biofuels and recycling

technologies, suggesting that immature clean technologies are particularly affected by financing

constraints. Our analysis departs from Howell (2017) by focusing on European firms rather

than US companies, and by looking at different types of non-public finance. This is important

as financial intermediation is not structured in the same way on the US and European markets

and policies for REN technologies have been relatively more generous in Europe over the last

decades.

Finally, firms active in renewables tend to be relatively small, both in the R&D and deploy-

ment stage (Noailly and Smeets, 2015; Donovan, 2015). As a consequence, REN projects are

often small (compared to nuclear or gas for instance) and small companies do not have an in-

stitutional track record to secure debt financing. Incumbents, by contrast, are large companies

often specialized in FF technologies and for which shifting to REN often implies cannibalizing

their core business. As a result, energy producing firms and utilities are far from active in ac-

quiring promising clean energy startups, thus limiting the available exit options for REN firms

(Ghosh and Nanda, 2010; Gaddy et al., 2016).

Altogether, these factors explain why REN investments may have an unattractive risk/return

profile compared to FF investments.3 Our work contributes to investigate empirically the hy-
3The specificities of the REN sector also explain why project financing is so popular, compared to other sources

of financing. Project financing is mainly used for the deployment stage (i.e. construction of REN generating
facilities, such as solar or wind turbines) and is less suited for R&D investment, which is why we abstract from
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pothesis that firms specialized in REN innovation may be more vulnerable to financial con-

straints than firms specialized in FF innovation.

3 Empirical strategy

We follow the existing literature on financing constraints and innovation (Brown and Petersen,

2009; Brown et al., 2012; Loof and Nabavi, 2016) and estimate the relationship between in-

novative activities and firms’ level and stock of internal finance. We aim to test whether an

expansion of cash flows is positively associated with innovation (suggesting a binding financing

constraint) for firms innovating in energy technologies. In particular, we want to test whether

firms innovating in renewable technologies are more susceptible to the innovation-cash flow

sensitivity than firms innovating in fossil-fuel technologies. We measure innovation by patent

counts and relate patenting activities to firms’ financial sources and other controls for firm’s

and technology markets characteristics. Since we are interested in estimating the differential

effect of firms’ internal finance on innovation for REN versus FF firms, we pool both samples

of firms and introduce interaction terms between cash variables and a dummy for REN firms.

More specifically, we estimate the conditional expectation of patenting activities as follows:

E(PATz,it/Xz,it, νi, ωt) = exp (βz,1CashF lowsz,it−1 + βz,2∆CashHoldz,it−1

+ βz,11CashF lowsz,it−1 ∗RENfirms

+ βz,22∆CashHoldz,it−1 ∗RENfirms

+ βFRENfirms+ βz,3EXTz,it−1

+ βz,4STOCKPz,it + βz,5Xz,it + νi + ωt+ ϵz,it)

(1)

where subscripts z, i and t denote technology (z = REN,FF )4, firm and year, respec-

tively; PAT captures (REN or FF) patent counts; CashF lows and ∆CashHoldings are firm’s

cash flow and growth in cash holdings respectively; EXT is a vector of financial variables

project financing in this paper. This form of financing provides a fixed-income which relies solely on the ability
of the project cash flows to repay the amounts borrowed; it typically involves the creation of a project company
(Special Purpose Vehicle) which is the legal owner of the project assets and which has contractual agreements
with a number of other parties that include off takers, operators, suppliers, insurers and so on. About 30% of the
total new investment deployed into large scale REN projects over the 2003-2013 period was financed by project
finance debt.

4We do not have enough observations to provide a more refined analysis per specific REN - e.g. solar, wind,
etc - or FF technology type.
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relating to firms’ sources of external finance (namely long-term debt Dbtt−1 and stock issues

Stkt−1); STOCKP is the cumulative stock of patents in technology z filed by the firm, reflecting

spillovers from past innovation; X is a vector of control variables capturing firm’s characteris-

tics (firms’ ratio of sales to total assets, firm’s age and number of employees) and other factors

affecting the market for REN and FF technologies (fossil-fuel prices and installed capacity); ν

and ω capture unobserved firm, and time heterogeneity, respectively; and ϵ is an IID error term.

All control variables are lagged by one period (except age and number of employees) to allow

for some delay in patenting activities.

The theoretical prediction is that financially constrained firms should exhibit a positive

coefficient on cash flows - reflecting the positive innovation-cash flow sensitivity - and a negative

coefficient on cash holdings growth, as a reduction in cash holdings releases cash for innovation

activities (Brown et al., 2012). Hence, a positive coefficient on the total effect of cash flows

interacted with REN firms indicates that a positive shock on cash flows is positively associated

with innovation of REN firms, and this coefficient is significantly different from the effect on

FF firms. Note that in nonlinear count models, interaction effects will not be equal to βz,11

and βz,22 as in linear models. This is because in nonlinear models the marginal effect is not

constant over its entire range. As a result, a simple Wald test will not inform about statistical

significance and the signs of the interaction terms do not necessarily indicate the direction of

the interaction effect (see Appendix).5 To calculate total interaction effects, we follow Ai and

Norton (2003) and apply the Delta method for variance estimation to compute standard errors

for the interaction terms.

While equation (1) allows us to estimate our hypothesis of significant difference across REN

and FF firms, we also estimate separate estimations on each specific subsample of firms as this

allows us to better illustrate the specific effects of our control variables on each type of firms:

E(PATz,it/Xz,it, νi, ωt) = exp
(
βz,1CashF lowsz,it−1 + βz,2∆CashHoldingsz,it−1 + βz,3EXTz,it−1

+ βz,4STOCKPz,it + βz,5Xz,it + νi + ωt + ϵz,it)

(2)

We estimate equations (1) and (2) by negative binomial models, which do not impose equidis-
5A significant interaction effect is possible even when βz,11 = 0.
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persion (i.e. the equivalence of the conditional mean and variance).6 Estimating the relationship

between financial sources and patenting potentially suffers from a number of econometric chal-

lenges. First, there may be omitted variables at the firm-level which could be correlated with

both cash flows and patenting. Cash-rich firms may for instance be more likely to patent as this

is a costly process. Some firms, e.g. with better managerial abilities, may be both more able to

attract funding and to patent than others. All these factors could imply that financial variables

are correlated with the error term of the regression and yield inconsistent estimates. We address

this issue first by introducing firms’ fixed effects νi into the count data model. Since equations

(1) and (2) are dynamic models in which innovation is determined by past realisations of patent-

ing activities due to the inclusion of the cumulative patent stock on the right-hand-side, the

assumption of strict exogeneity is violated and we cannot rely on the conditional fixed-effect

Poisson estimator as in Hausman et al. (1984). Instead, we introduce firms’ fixed effects νi

using the ‘presample estimator’ introduced by Blundell et al. (2002), which is used as an initial

condition to proxy for unobserved heterogeneity. More specifically, we compute the firm’s cu-

mulative patent stock in all technologies (i.e. not only REN and FF) over the presample period

(1978-1994) and introduce it as νi in equation (1 in order to capture individual firms’ propen-

sity to patent (Blundell et al., 2002; Aghion et al., 2016; Noailly and Smeets, 2015). To control

for additional time-varying firms’ heterogeneity, we include controls for firms’ characteristics,

namely firm’s age, sales and number of employees. These variables control for instance for the

fact that as firms grow older and larger they may both increase their levels of internal finance

and become more successful at patenting. In addition, these variables control for investment

opportunities - e.g. sales, firms’ age, etc - as the level of cash flows may reflect the value of

future growth opportunities, such as a greater demand for the firms’ product, rather than about

financial constraints (Alti, 2003; Erickson and Whited, 2000). We also include a full set of time

dummies ωt to control for time-dependent factors common to all firms, such as business cycles

which affect both financing and innovation.

Second, we may be concerned by the fact that cash variables may be potentially endogenous

to innovation activities due to reverse causality. Previous literature shows for instance that

startups use patents as a signal to investors (Conti et al., 2013). In our case, this is likely less

of an issue since our sample is composed of established firms, rather than startups. Yet, to
6In robustness analysis, we will also consider the Poisson model.
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address this potential source of endogeneity, we use a control function approach to instrument

internal finance. As finding an exogenous instrument for financing sources (i.e. correlated with

firm’s finance but not with innovation) is notoriously difficult, we follow the corporate finance

literature and use lagged financial variables dated over t− 3 and t− 4 as instrumental variables

(Brown et al., 2012).7

For non-linear count models such as Poisson and negative binomial, the control function

estimation is more efficient and consistent than the standard instrumental variables model,

since the two-stage interpretation of linear two-stage least squares does not carry over to non-

linear models (Cameron and Trivedi, 2013; Wooldridge, 2015). The control function approach

operates by estimating CFt−1 - our potentially endogenous variables of interest - as a function of

our instrument and other exogenous variables, and then inserting the predicted errors from this

first stage into the second stage as a separate control variable. A simple test of the statistical

significance of the coefficient on the predicted residuals will inform us whether our CFt−1 is

indeed endogenous, a procedure equivalent to a Durbin-Hu-Hausman exogeneity test Wooldridge

(2015). Another major advantage of the control function approach is that it makes it much

easier to handle interaction terms that involve endogenous regressors. In our case, if we want

to control for the endogeneity of both CFt−1 and the interaction term (CFt−1 * REN firms), it

is sufficient to only estimate the first-stage regression and add the fitted residuals in the second

stage equation (Wooldridge, 2015, p.428; Papies et al., 2017). Finally, the control function

approach requires bootstrapping of standard errors.

4 Data

4.1 Measuring innovation

We measure innovation in REN and FF technologies using patent data, following the literature

on low-carbon innovation (Popp, 2002; Johnstone et al., 2010). There are several advantages and

limitations to working with patent data, which have been discussed at length in the literature.8

7Due to the limited degrees of freedom, we cannot perform any non-linear instrumental variable estimation
via GMM.

8A main caveat of working with patents is that not all inventions are patented, as for strategic reasons firms
may prefer not to disclose valuable information. The value of patents is also very heterogeneous: only a few
patents will lead to successful commercial applications. Despite these limitations, the link between patents and
inventions has been clearly established in the literature (Griliches, 1990) as patents are correlated with other
indicators of innovative activity, such as R&D expenditures or new product introductions. For our purpose, the
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We extract patents from the Orbis dataset provided by Bureau van Dijk and linked to the

European Patent Office’s (EPO) PATSTAT dataset.9 The main advantage of using the Orbis-

PATSTAT dataset to extract relevant patents is that it provides us with an unique firm’s

identifier that allows us to match firm-level patents to firms’ balance sheet and income statement

data.

We extract data on firms’ patenting activities in REN and FF technologies using Interna-

tional Patent Classification (IPC) codes to select patents in REN and FF technologies. REN

patents include patents in wind, solar, hydro, marine, biomass, geothermal and waste energy

technologies (Johnstone et al., 2010), while FF patents include patents related to production of

fuel gases by carbureting air, steam engine plants, gas turbine plants, hot-gas or combustion-

product positive displacement engine, steam generation, combustion apparatus, furnaces and

improved compressed-ignition engines (Lanzi et al., 2011). We also extract firms’ patents in all

technologies (not only REN or FF) to be able to correct for firms’ propensity to patent.

Just as in Noailly and Smeets (2015), we focus on firms that have been granted at least one

REN or FF patent at the EPO and 17 national patent offices (EU-15, Switzerland and Norway).

We count the number of granted patents per firm per year over the 1995-2009 period10, including

only first priority patents and excluding equivalent patent filings.11 The fact that we focus on

granted patents of firms’ registered in Orbis implies that our sample is not likely to include

the lowest quality patents.12 We use the application year of priority patents, as this is closer

to the year of the inventive idea than the year in which the patent was granted. We compute

the annual count of REN and FF patents per firm as well as firm-specific REN and/or FF

knowledge stocks, which are the cumulated number of patent counts over the period.13

main advantage of patent data is that they are highly disaggregated and are available at the firm and technology
level.

9We thank the European Investment Bank for providing us with the dataset.
10Note that our data range stops in 2009 before the financial crisis. In this way, we avoid the complexity of

studying the financing of energy technologies in the aftermath of the crisis, characterized by specific Green New
Deal policies difficult to account for. Such analysis will deserve a study on its own in future work.

11For patent families with multiple priorities, we only keep the patent with the earliest priority date.
12In addition, we restrict our analysis to firms that could be linked to the Orbis dataset, therefore excluding

patents from individuals, which may be of lower value.
13Knowledge stocks are calculated using the perpetual inventory method, assuming an annual depreciation

rate of 15%.
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4.2 Sources of finance

Using the financial database of Orbis, we have access to data on firms’ (consolidated) balance

sheets and income statements. We conduct a series of consistency checks as in Kalemli-Ozcan

et al. (2015) recommended when working with financial variables in Orbis (see Appendix) and

we trim the 1% tails of all regression variables to remove outliers. We are left with a sample of

1,300 firms over the 1995-2009 period for which we can exploit balance sheets data. We consider

the following indicators of financing sources:

• Cash flow: computed as total cash flow (including depreciation), divided by the end-of-

last-period stock of total assets.

• Cash holdings growth: change in firm-level stocks of cash (cash holdings and cash equiv-

alents). This variable aims to capture so-called ‘R&D smoothing’ (Brown and Petersen,

2011).

• Long-term debt: computed as the annual change in total long-term debt, divided by the

end-of-last-period stock of total assets.

• Stock issues: computed as the annual change in outstanding issued share capital, divided

by the end-of-last-period stock of total assets.

All variables are measured in 100,000 USD, using the exchange rate data from the Interna-

tional Energy Agency to convert the financial variables into US dollars.

4.3 Other firm-level variables

We further extract a number of firm-level control variables from the financial database of Orbis

and include (net) sales14, the number of employees and the age of the firm.

In addition, we add variables that aim to capture changes in the macro-economic environ-

ment of the firm in particular with respect to the market and policy environment affecting REN

and FF technologies in Europe over the last decades. These variables are included as additional

controls in our regressions.15 Table 6 in the Appendix provides specific definitions of all these

variables and their data sources.
14Sales are computed as the ratio of net sales to end-of-last period total assets.
15As our focus is on interpreting the impact of financial variables, we refer to Noailly and Smeets (2015) for

a more extensive discussion of how these other control variables affect REN and FF innovation.
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Energy prices: we extract data from the Energy Prices and Taxes database of the Interna-

tional Energy Agency on country-level prices of the different fossil-fuel energy sources, namely:

oil, gas and coal.16 To make FF prices firm-specific, we weight FF prices according to the firm’s

distribution of patent filings across countries using information on patent families as in Noailly

and Smeets (2015) and Aghion et al. (2016). Since energy prices include taxes, this variable

can proxy for carbon pricing policies.

Market size: we extract data from the Energy Statistics database from the IEA on electricity

output from REN and FF sources per country in total number of gigawatt hours generated by

power plants. For FF energy, we use data on electricity output in oil, gas and coal, while for

REN energy we have access to disaggregated data on electricity output from solar, wind, hydro,

marine, geothermal, biomass and waste energy. Market size variables also capture demand-pull

policies, such as feed-in tariffs, put in place in specific countries. We compute firm-specific

market size by using designation country weights as well as technology weights in each firm’s

patent portfolio (see Appendix). Market size variables are likely to capture demand-pull policies

(e.g. guaranteed tariffs, investment and production tax credits) that aim to increase the market

for renewables.

4.4 Descriptive statistics

We extract patents from two types of firms: (1) firms that specialize solely in REN innovation

(REN firms), (2) firms that specialize solely in FF innovation (FF firms) over the 1995-2009

period.17 This provides a sample of 1,287 firms with a majority of FF firms (68%). Including

all controls, our sample of firms reduces to 1,203 firms composed of 390 REN firms and 813 FF

firms. Our sample of patents consists of 1,606 patents, among which about one third are from

firms innovating in REN technologies. Figure 1 plots the evolution of FF and REN patents over

the period 1995-2009.
16These are prices paid at the power plant for electricity generation, i.e. prices paid by electricity facilities for

a certain type of fuel (including taxes).
17We exclude ‘mixed’ firms that are active in both technological fields, REN and FF, from the analysis. These

very large firms (mostly active in FF technologies) differ considerably from our set of specialized firms and their
financing sources and structure cannot be compared with the ones of small specialized firms. Table 7 in Appendix
shows that these firms are on average 5 times larger in terms of number of employees and total assets and patent
10 times more than specialized firms. See also Noailly and Smeets (2015) for a more in-depth discussion of the
difference between mixed and specialized firms. Although mixed firms would certainly deserve an analysis on
their own, the sample size - 90 mixed firms over the 1995-2009 - is too limited to provide reliable estimates.
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Figure 1: Number of REN and FF patents, 1995-2009

Table 1 presents the summary statistics of financial variables for the different types of firms.

For firms specialized in REN innovation, the firm’s median flow of cash, cash holdings, flow of

total debt and new stock issues, all scaled by beginning-of-period total assets, are of 0.093, 0.050,

0 and 0.001, respectively. For all firms, median cash flow and cash holdings ratios are always

much larger than other financing sources, underlying the critical role of internal finance in our

sample of innovative firms. This is not surprising given evidence from previous literature18 and

given that we do not consider publicly listed firms.19 Median values of debt and stock issues

are always close to zero, so a typical firm in our sample obtains very little external finance.

Regarding other firms’ characteristics, we can see in Table 1 that on average REN firms tend to

be about 5-6 years younger, have a smaller number of employees than FF firms, and file slightly

less patents (all technologies included) per year.

18Brown et al (2009) find that young firms have average cash holdings ratios that are twice as large as the
cash holdings for mature firms, reflecting the fact that buffer stocks of liquidity are more important for firms
more likely to face financial constraints.

19Mean debt and stock issues to assets ratios for specialized REN and FF firms are 10 to 20% of mean cash
ratios, and this is mainly explained by outlier firms as the median debt and stock issues ratios remain very low.
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Table 1: Summary Statistics

REN firms
Mean SD 50th perc. 75th perc. Min Max

CFt−1 0.121a 0.236 0.093 0.152 -0.931 6.908
CashHoldingt−1 0.131a 0.388 0.050 0.153 0.000 14.9
Dbtt−1 0.025 0.330 0.000 0.026 -0.981 12.167
Stkt−1 0.018 0.078 0.001 0.009 0.000 1.686
Salest 1.679a 1.784 1.327 2.015 0.000 42.464
Total Assetst 5,474a 24,042 362 1,676 11.2 389,237
Aget 31a 32 21 37 0 191
Employeest 1,979a 11,606 165 610 0 319,998
REN patentst 0.249 1.105 0 0 0 19
All patentst 3.858a 15.013 0 1.5 0 197.5

FF firms
Mean SD 50th perc. 75th perc. Min Max

CFt−1 0.098 0.176 0.083 0.134 -1.245 8.780
CashHoldingt−1 0.105 0.184 0.043 0.128 0.000 4.45
Dbtt−1 0.012 0.350 0.000 0.010 -0.866 22.610
Stkt−1 0.014 0.180 0.001 0.007 0.000 11.759
Salest 1.444 1.016 1.296 1.808 0.000 27.327
Total Assetst 8,677 27,565 579 3,471 11.1 376,038
Aget 37 37 26 48 0 432
Employeest 2,978 9,842 263 1,278 0 115,000
FF patentst 0.231 0.802 0 0 0 18
All patentst 5.628 34.885 0 2 0 1,028
Average over firm-year observations, 1995-2009: Number of observations: REN firms
(N=1,995 firms), FF firms N=4,811 firms) a indicates significant difference (below 5%)
with FF firms. All balance sheets data (except age and number of employees) are scaled
by beginning of the year ratios to total assets.
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5 Results

In Table 2, we present the baseline results of estimating equation (1) by negative binomial

models for the pooled sample of REN and FF firms. The dependent variable in every column

is the number of patents (either REN or FF) per firm i and year t. Column (1) includes only

internal finance variables and firms’ characteristics, column (2) adds the full set of technology

market controls and column (3) adds external finance variables. Our preferred specification is

provided in column (3) with all controls. All models include full sets of year dummies and firms’

fixed effects captured by the presample patent stock. In all regressions, the presample variable

capturing firms’ fixed effects and heterogeneity has a significant negative coefficient. Note that

we do not have a priori expectations on the sign of this coefficient, but the fact that we do find

statistically significant coefficients in most models suggests that the presample variable does

capture part of the unobserved firm heterogeneity.

As discussed in Section 3, we look at how internal finance relates to patenting activities

for REN and FF firms by including interaction terms between cash flows and cash holdings

growth and a dummy for specialized REN firms, respectively. In this way, we can compare

the coefficients of internal finance variables across both types of firms to determine whether

the effect on REN firms is significantly different from the effect on FF firms. Since we conduct

nonlinear estimation, we cannot directly interpret the coefficient - nor the sign - of the interacted

variables. Instead, we compute total interaction effects using the Delta method (Ai and Norton,

2003) and report them at the bottom of Table 2 (see Appendix for computation details). Across

all specifications in columns (1) to (3), we find that the interaction term (CFt−1 * REN firms)

is significant and positive, while the interaction term (∆Cashholdingst−1 x REN firms) is never

significant. The positive association between cash flows and innovation for REN firms provides

support to the hypothesis that the innovation-cash flow sensitivity is significantly higher for

REN firms than for FF firms, suggesting that REN firms are more financially constrained than

FF firms. The total interaction effect on (CFt−1 * REN firms) increases in column (3) when we

include controls for all potential other sources of finance, namely external financing via long-

term debt and stock issues. The fact that we never find a statistically significant coefficient for

the interaction term with cash holding growth suggests that there is no significant difference

between REN and FF firms in terms of R&D smoothing. Regarding external sources of finance,
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we find no evidence in column (3) for a significant association between long-term debt and stock

issues and patenting activities, respectively. This is not very surprising given that we showed

in Section 4 that firms in our sample receive very little external finance.

In column (4) of Table 2, we report the results of our instrumental variable estimation using

a control function approach. We follow Brown et al. (2012) and instrument CFt−1 by using

lagged cash flow averaged over t− 3 to t− 4, although results are robust to using lags over t− 2

and t−3.20 For cash holding growth, however, lagged values never appear to be correlated with

∆Cashholdingst−1 in first stage estimations (see columns (3) to (4) in Table 5 in Appendix).

Since we cannot find any suitable instrument for cash holding growth, we focus on instrumenting

CFt−1, as this is also the only variable for which we find evidence of a significant association

with innovation in columns (1)-(3) of Table 2.

In the bottom panel of column (4), we see that the estimated interacted coefficient between

cash flow and REN firms remains positive and statistically significant. The fact that the first

stage residuals are not significant in column (4) indicate that we cannot reject the null hypothesis

of exogeneity and thereby provides reassurance that our estimation results in column (3) are

not being influenced by endogeneity (Wooldridge, 2015; Cameron and Trivedi, 2013, Chapter

10). Likely, our large set of firms’ controls and fixed effects already capture much of firms’

heterogeneity.21 Column (5) shows that the results are robust to using lagged cash flow averaged

over t − 2 to t − 3 as an instrument for CFt−1. Again, first-stage residuals are not significant

and we cannot reject exogeneity.

Looking at other control variables in Table 2, we find that firms’ age is significantly nega-

tively associated with patenting activities, while firms’ size in terms of number of employees is

positively associated with innovation. By contrast, we find no significant association between

the sales ratio and patenting activities. There is evidence for path-dependency in innovation at

the firm level, as a larger stock of past REN and FF patents respectively is positively associated

with higher patenting activities. Fossil fuel prices tend on average to be negatively associated

with patenting activities of all firms. The market size of REN technologies is positively associ-

ated with firm-level innovation, but there is no significant association between FF market size

and firm-level patents.
20Using further lags (t-5 and t-6) would significantly affect our number of observations.
21Table 5 in Appendix reports the full first stage results.
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Table 2: Pooled estimations with interaction terms

Specialized firms (1) (2) (3) (4) (5)
Control Control
Function Function
(t− 3, t− 4) (t− 2, t− 3)

CFt−1 0.089 0.090 -0.018 0.566 0.048
(0.165) (0.163) (0.179) (0.702) (0.567)

CFt−1 x REN firms 0.779* 0.759* 0.979** 0.971* 1.239***
(0.413) (0.426) (0.453) (0.583) (0.438)

∆Cashholdingst−1 -0.118 -0.073 -0.136 -0.417 -0.232
(0.252) (0.257) (0.268) (0.359) (0.317)

∆Cashholdingst−1 x REN firms -0.145 -0.162 -0.235 0.008 -0.112
(0.319) (0.322) (0.306) (0.557) (0.454)

RENfirms 0.203** 0.499*** 0.520*** 0.436*** 0.494***
(0.096) (0.137) (0.144) (0.149) (0.140)

Dbtt−1 -0.325 -0.527* -0.434*
(0.204) (0.281) (0.242)

Stkt−1 -0.183 -1.005 -0.913
(0.547) (1.483) (1.009)

Log(Age)t -0.217*** -0.207*** -0.192*** -0.200*** -0.196***
(0.049) (0.046) (0.048) (0.058) (0.048)

Log(Employees)t 0.092*** 0.081*** 0.089*** 0.080*** 0.090***
(0.017) (0.018) (0.019) (0.021) (0.018)

Salest−1 0.039 0.027 0.038 0.035 0.033
(0.030) (0.030) (0.033) (0.040) (0.037)

Log(KS)t−1 0.866*** 0.849*** 0.868*** 0.853*** 0.867***
(0.064) (0.062) (0.062) (0.081) (0.073)

Log(FF prices)t−1 -1.356*** -1.390*** -1.328** -1.303**
(0.512) (0.539) (0.654) (0.560)

Log(REN market size)t−1 0.388*** 0.437*** 0.374** 0.452***
(0.126) (0.133) (0.152) (0.144)

Log(FF market size)t−1 -0.061 -0.106 0.163 -0.113
(0.240) (0.234) (0.293) (0.262)

presample -0.169*** -0.132** -0.128** -0.182 -0.125
(0.040) (0.058) (0.059) (0.120) (0.099)

Constant -1.919*** -0.381 -0.444 -0.713 -0.582
(0.383) (1.041) (1.075) (1.299) (1.225)

First-stage residuals -0.587 -0.018
(0.687) (0.656)

Total interaction terms
(Delta method)
CF * REN firms 0.266** 0.283** 0.550** 0.336*** 0.340***

(-0.162) (0.174) (0.350) (0.098) (0.108)
CashHoldings * REN firms -0.041 -0.053 -0.091 -0.040 -0.053

(0.069) (0.066) (0.067) (0.122) (0.093)

Observations 7,412 7,199 6,806 5,866 6,726
Log Likelihood -3802 -3714 -3491 -2941 -3422
Number of firms 1287 1260 1203 1083 1179
* p<0.1, ** p<0.05, *** p<0.01. The dependent variable in every column is the number of patents per firm
i and year t for the sample of specialized firms (REN and FF firms). Robust standard errors are clustered at
the firm level. In columns (4) and (5), the models are estimated using the control function approach with
bootstrap standard errors with 150 iterations. First-stage estimations are provided in Table 5, columns (1)
and (2) respectively. All specifications include year fixed effects.
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In Table 3, we estimate equation (2) for each separate group of firms to better identify

separate effects on REN and FF firms.22 The significant coefficients on internal finance variables

for the subset of REN firms confirm previously found results: there is evidence of a positive

association between cash flow and patenting activities for REN firms. Changes in cash holdings

are negatively associated with patenting activities for REN firms in columns (1)-(3), although

the coefficient is only statistically significant in column (3) when we include the full set of

controls. Looking at columns (4)-(6) in specifications for the sample of firms that specialize

in FF innovation, we find no evidence of a positive association between cash flow or changes

in cash holdings and patenting activities. The coefficient for cash holdings is only negative in

column (6) when we include the full set of controls, although insignificant. Here, the negative

association between cash holding growth and patenting activities in column (3) suggests that

REN firms may be using cash stocks as a buffer to smooth R&D over time. However, we saw

in Table 2 that the coefficient on cash holding growth is not significantly different from the

coefficient for FF firms. As before, external finance (long-term debt and stock issues) does not

appear to be associated with patenting activities of specialized firms in columns (3) and (6).

The only exception is a negative association between long-term debt and patents for FF firms in

column (6). A possible interpretation for this result is that other investments – such as physical

capital investment – financed by long-term debt may crowd out innovation investments for these

firms, but these results should be taken with caution given the low level of external finance in

our sample of firms. Finally, the results in Table 3 show that REN market size - a proxy for

REN market subsidies over the period - is positively associated with patenting activities on REN

firms as expected. Fossil fuel prices - capturing energy taxation - are negatively associated with

patenting activities by FF firms.23

In Table 4, we add further robustness tests to estimating equation (1). In columns (1) and

(2), we consider the specific subsamples of mature and large firms as we may be worried that

in Table 2 the differential impact of internal finance on innovation may be driven by the fact

that FF firms are different from REN firms in terms of age and size as established in Table
22Given our relatively small number of firms, we cannot estimate the model on more disaggregate subgroups

of firms (e.g. solar or wind firms).
23Note that we do not have a priori expectations on the coefficient for FF prices, as higher FF prices might

encourage firms to innovate more in FF technologies (to develop more efficient and cheaper technologies) but
could also encourage firms to develop alternative technologies such as REN technologies and thereby discourage
FF innovation.
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Table 3: Estimations on REN and FF firms subsamples

(1) (2) (3) (4) (5) (6)
REN firms REN firms REN firms FF firms FF firms FF firms

CFt−1 0.936* 0.983* 1.102** 0.167 0.170 0.085
(0.505) (0.544) (0.542) (0.174) (0.174) (0.164)

∆Cashholdingst−1 -0.326 -0.309 -0.448** 0.052 0.066 -0.001
(0.232) (0.228) (0.209) (0.249) (0.257) (0.266)

Dbtt−1 -0.142 -0.737**
(0.164) (0.286)

Stkt−1 -0.784 0.053
(1.198) (0.552)

Salest−1 0.059 0.044 0.051 -0.048 -0.050 -0.056
(0.037) (0.040) (0.041) (0.047) (0.047) (0.054)

Log(Age)t -0.346*** -0.353*** -0.315*** -0.163*** -0.165*** -0.158***
(0.086) (0.085) (0.089) (0.053) (0.053) (0.053)

Log(Employees)t 0.124*** 0.097*** 0.107*** 0.080*** 0.071*** 0.079***
(0.030) (0.032) (0.035) (0.021) (0.021) (0.022)

Log(REN KS)t−1 0.662*** 0.609*** 0.649***
(0.169) (0.159) (0.157)

Log(FF KS)t−1 0.892*** 0.878*** 0.893***
(0.071) (0.073) (0.073)

Log (FF prices)t−1 -1.294 -1.148 -1.393** -1.438**
(0.921) (0.985) (0.618) (0.638)

Log (REN market size)t−1 0.278* 0.292* -0.090 0.031
(0.151) (0.157) (0.269) (0.286)

Log (FF market size)t−1 -0.252 -0.222 -0.201 -0.342
(0.273) (0.287) (0.376) (0.367)

presample 0.056 -0.008 -0.008 -0.216*** -0.253*** -0.237***
(0.048) (0.060) (0.063) (0.050) (0.071) (0.071)

Constant -2.902** -0.297 -0.852 -1.693*** 1.307 1.368
(1.167) (1.938) (2.036) (0.412) (1.403) (1.456)

Observations 2,326 2,136 1,995 5,086 5,063 4,811
Log Likelihood -1170 -1095 -1003 -2585 -2577 -2448
Year FE Yes Yes Yes Yes Yes Yes
Number of firms 443 417 390 844 843 813
* p ≤ 0.1, ** p ≤ 0.05, *** p ≤ 0.01. The dependent variable in every column is the number of patents in technology z
per firm i and year t for the subsamples of REN firms and FF firms, respectively. Robust standard errors are clustered
at the firm level. All specifications include year fixed effects. Fossil fuel price and market size variables are constructed
by using firm-specific weights reflecting the firms’ patent portfolio and designation countries as in Noailly and Smeets
(2015).
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1. Hence, in column (1) of Table 4, we consider the subsample of mature REN and FF firms

(with at least 25 years of existence) and in column (2), we consider the subsample of large

REN and FF firms (with more than the median of 200 employees). We find that the significant

difference on the innovation-cash flow sensitivity still holds for the subsamples of mature and

larger specialized firms, respectively. We find that the total interaction effect of (CFt−1 * REN

firms) is significant and positive. This is striking as this suggests that innovation activities of

mature and large REN firms are significantly more sensitive to a shock in internal finance –

and thus more susceptible to financing constraints – than similar mature and larger FF firms.

This result tends to suggest that financing constraints are not a manifestation of the smaller

size or lower maturity of REN companies, but more likely of other factors such as distinct

technological and policy risks. Finally, in column (3), we find that our results are robust to

a Poisson estimation model. In this case, the total interaction effect of (CFt−1 * REN firms)

remains significant and positive, albeit smaller.

6 Conclusions

This paper aimed to examine the role of firms’ cash flows as a source of financing for energy

innovation. Drawing on the result from the corporate finance literature that firms that are

financially constrained tend to be more sensitive to shocks in the supply of internal finance, we

investigated whether firms specializing in REN innovation exhibit a higher innovation-cash flow

sensitivity - an indication of binding financial constraints - than firms specializing in FF inno-

vation. Compared to FF innovation, REN innovation presents more risks for investors, due to

the larger reliance on (uncertain) policy support and specific technological characteristics. Our

study provides thus some first empirical support for the hypothesis that clean energy innovation

may be particularly more difficult to finance than fossil-fuel based innovation, confirming quali-

tative evidence from the literature. Using count estimation techniques for a sample of European

firms over the 1995-2009 period - a period of early development of REN technologies supported

by market subsidies - we find that an extension of cash flows is positively associated with more

patenting activities by REN firms and that this effect is significantly different for REN firms

compared to FF firms, suggesting that firms specialized in REN technologies are more vulner-

able to financing constraints than FF firms. The significant difference in innovation-cash flow
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Table 4: Robustness results

(1) (2) (3)
Mature Large Poisson

CFt−1 -0.285 -0.342 0.016
(0.453) (0.406) (0.165)

CFt−1 x REN firms 1.583*** 1.509*** 0.299
(0.508) (0.476) (0.201)

∆Cashholdingst−1 0.106 -0.801 0.038
(0.473) (0.529) (0.211)

∆Cashholdingst−1 x REN firms 0.891 0.311 -0.184
(1.158) (0.534) (0.224)

RENfirms 0.291* 0.388** 0.650***
(0.164) (0.176) (0.177)

Dbtt−1 -0.485 -0.461* -0.227
(0.383) (0.247) (0.193)

Stkt−1 -2.654* 0.639 -0.219
(1.585) (0.475) (0.608)

Log(Age)t -0.143 -0.225*** -0.218***
(0.126) (0.057) (0.064)

Log(Employees)t 0.042 0.053 0.080***
(0.026) (0.036) (0.020)

Salest−1 -0.035 0.048 0.042
(0.065) (0.056) (0.037)

Log(KS)t−1 0.888*** 0.961*** 0.991***
(0.089) (0.065) (0.054)

Log(FF prices)t−1 -2.153*** -1.709** -1.230**
(0.618) (0.751) (0.601)

Log(REN market size)t−1 0.307** 0.329* 0.463***
(0.153) (0.183) (0.162)

Log(FF market size)t−1 -0.019 0.156 -0.070
(0.283) (0.272) (0.223)

presample -0.122 -0.097* -0.144*
(0.171) (0.058) (0.074)

Constant 1.458 -0.076 -0.816
(1.333) (1.490) (1.136)

Total interaction terms (Delta method)
CF * REN firms 0.365*** 0.483*** 0.089**

(0.102) (0.13) (0.039)
CashHoldings * REN firms 0.216 0.008 -0.046

(0.262) (0.127) (0.041)

Observations 3,375 3,643 6,806
Log Likelihood -1677 -2175 -3789
Number of firms 555 632 1203
* p<0.1, ** p<0.05, *** p<0.01. The dependent variable in every column is the number
of patents per firm i and year t for the sample of specialized firms (REN and FF firms).
Robust standard errors are clustered at the firm level. All specifications include year
fixed effects. Fossil fuel price and market size variables are constructed by using
firm-specific weights reflecting the firms’ patent portfolio and designation countries as in
Noailly and Smeets (2015). 23



sensitivity between REN and FF firms still holds if we restrict the samples to consider only

large and mature firms. This suggests that the finding that REN firms are more financially

constrained than FF firms is for the most part likely to be a manifestation of the environmen-

tal market failure (reliance on uncertain public support) and differences in technological risks,

rather than explained by the lower maturity of the industry.

Our results shed light on how distinct risk-profiles between clean and dirty energy technolo-

gies may affect the financing of energy innovation and thereby drive the direction of technological

change, as financiers will tend to support lower-risk technologies that are easier to finance. This

has important implications for future energy transition policies as more innovation is still needed

in advanced clean energy technologies, such as decentralized renewable energy, advanced biofu-

els or unproven solar technologies and as the pace of the energy transition will necessarily need

to accelerate to meet the climate neutrality goal by 2050. Our analysis emphasizes that policies

should not only aim at mobilizing finance to fill the investment gap for clean energy targets but

also consider gradually decreasing, discouraging or even banning the financing of fossil-fuel in-

novation. In this respect, the announcement by the European Investment Bank to stop funding

oil, gas and coal projects at the end of 2021 is a move in the good direction. Under the new

policy, energy projects applying for the European Investment Bank funding will need to show

that they can produce one kilowatt hour of energy while emitting less than 250 grams of carbon

dioxyde. In a similar way, it could be useful to reevaluate the portfolio of policy instruments for

energy innovation, ranging from public grants and contracts, loans or guarantees, public-private

equity partnerships, innovation prizes and tax credits (Olmos et al., 2012) to gradually remove

financial support for fossil-fuel R&D. An additional implication is that financial institutions

should be able to better assess and scrutinize clean energy projects. In this context, the process

of developing a standardized Green Taxonomy to support the European Green New deal is a

promising initiative.

As a first attempt to investigate the role of financing constraints for renewable versus fossil-

fuel innovation, our analysis presents several limitations due to our small sample of firms. Future

work could take advantage of larger datasets allowing more refined econometric techniques to

provide a more thorough empirical investigation of how firms’ financing sources - cash, debt

and equity - affect firms’ R&D investments in energy technologies. Several questions are left
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for future research, such as for instance the role of the financial crisis, potential variation across

specific REN technologies (e.g solar vs. wind or biomass), the role of large incumbent FF firms

increasingly diversifying their patent portfolio to innovate also in REN technologies, or the

importance of policy risks versus technological risks in explaining financing constraints.
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Appendix

6.1 Delta method for computing interaction terms

Our baseline equation is as follows:

E(PATit/Xit, νi, ωt) = exp (β1CashF lowsit−1 + β2∆CashHoldz,it−1

+ β11CashF lowsit−1 ∗RENfirms

+ β22∆CashHoldit−1 ∗RENfirms

+ βFRENfirms+ β3EXTit−1

+ β4STOCKPit + β5Xit + νi + ωt+ ϵz,it)

(3)

According to the Delta method (Ai and Norton, 2003), the total interaction term on (CashF lowsz,it−1∗

RENfirms) is computed as follows:

δ2E(PATit/Xit, νi, ωt)

δCashF lowsz,it−1δRENfirms
=

[
(β1 + β11CashF lowsit−1 ∗RENfirms)

∗ (βF + β11RENfirms) + β11
]
E(PATit/Xit, νi, ωt)

(4)

6.2 First-stage control function approach

6.3 Variables definitions

For a detailed description of the variable construction we refer to Noailly and Smeets (2015).

The fossil-fuel price faced by firm i at time t is computed as:

pit =
∑
c

wic × pct

s.t. pct =
∑

f=oil,coal,gas

Mfc

MFFc
× pfct

(5)

where pct is the sum of (log) fossil-fuel prices pfct (oil, coal and gas) in country c at time t,

weighted by the respective average market shares of each fossil fuel type in that country. This

price is then multiplied by the weight wic =
Pit×MFFic∑

PitMFFic
, where Pic is the total number of patents

filed by firm i in designation country c and MFFc is the country’s FF average market size.24

24All our weights are fixed, i.e. we compute total patent counts Pic and average market sizes MFFc over the
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Table 5: First-stage - Control function estimations

Dependent variable CFt−1 CFt−1 ∆Cashholdingst−1 ∆Cashholdingst−1

(1) (2) (3) (4)
CFt−3,t−4 0.534***

(0.113)
CFt−2,t−3 0.818***

(0.045)
∆Cashholdingst−3,t−4 -0.026

(0.056)
∆Cashholdingst−2,t−3 -0.093

(0.081)
CFt−1 0.204* 0.200*

(0.112) (0.112)
∆Cashholdingst−1 0.202*** 0.159***

(0.019) (0.023)
Dbtt−1 -0.005 -0.006 0.131*** 0.192***

(0.013) (0.011) (0.030) (0.069)
Stkt−1 -0.128** -0.010 0.929* 0.944*

(0.064) (0.024) (0.545) (0.535)
Log(Age)t -0.000 -0.002 -0.001 0.000

(0.002) (0.002) (0.003) (0.003)
Log(Employees)t 0.004*** 0.003*** 0.001 0.002

(0.001) (0.001) (0.003) (0.003)
Salest−1 0.019*** 0.017*** 0.071* 0.085*

(0.004) (0.003) (0.043) (0.051)
Log(KS)t−1 -0.005* -0.003 0.008** 0.010**

(0.003) (0.003) (0.004) (0.004)
Log(FF prices)t−1 -0.001 0.013 0.114 0.135

(0.026) (0.023) (0.091) (0.093)
Log(REN market size)t−1 -0.009*** -0.004 0.005 0.008

(0.003) (0.003) (0.008) (0.008)
Log(FF market size)t−1 0.035** 0.026** -0.025 -0.021

(0.015) (0.013) (0.022) (0.018)
presample 0.001 0.001 0.002 0.003

(0.001) (0.001) (0.002) (0.002)
Constant -0.040 -0.074** -0.074**

(0.042) (0.035) (0.035)

Observations 5,866 6,726 5,966 4,989
R-squared 0.245 0.326 0.291 0.320
p ≤ 0.1, ** p ≤ 0.05, *** p ≤ 0.01. Robust standard errors are clustered at the firm level. Fossil fuel price
and market size variables are constructed by using firm-specific weights reflecting the firms’ patent
portfolio and designation countries as in Noailly and Smeets (2015).
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Table 6: Construction and sources of variables

Variable Construction Data source Time-
period

Renewable
(REN) patents

Count of patents in wind, solar, hy-
dro, marine, biomass, geothermal,
and waste energy technologies

Orbis-EPO
(PATSTAT)

1995-2009

Fossil fuel (FF)
patents

Count of patents in fuel gases
by carbureting air, steam engine
plants, gas turbine plants, hot-
gas or combustion-product positive
displacement engine, steam gener-
ation, combustion apparatus, fur-
naces, and improved compressed-
ignition engines technologies

Orbis-EPO
(PATSTAT)

1995-2009

Stock issues Capitalt−Capitalt−1

TotalAssetst−1
Orbis 1995-2009

Long-term debt LongTermDebtt−LongTermDebtt−1

TotalAssetst−1
Orbis 1995-2009

Cash flow CashF lowt
TotalAssetst−1

Orbis 1995-2009
Sales Salest

TotalAssetst−1
Orbis 1995-2009

∆CashHolding CashEquivalentst−CashEquivalentst−1

TotalAssetst−1
Orbis 1995-2009

Log employees Log(Employees+1) Orbis 1995-2009
Log age Log(Year-Date of incorporation+ 1) Orbis
Fossil fuel (FF)
price

see below - Noailly and Smeets
(2015)

IEA, PATSTAT,
INPADOC

1995-2009

REN and FF
market size

see below - Noailly and Smeets
(2015)

IEA, PATSTAT,
INPADOC

1995-2009

REN and FF
knowledge stock

(1− δ)Kit−1 + Pit Orbis, PATSTAT 1995-2009

As with prices in (5), we construct fixed firm-specific designation country weights wik to

compute firm-level FF and REN market sizes. However, we now also introduce fixed firm-

specific technology weights wis to account for the fact that e.g. a firm innovating mainly in

solar power will be mostly concerned with the market size for solar energy. Hence we compute:

Mit =
∑
c

∑
s

wiscMsct (6)

with wisc =
Pisc∑

s

∑
c Pisc

, where Pisc is the number of patents of firm i in technology s in country

c and Msct is the market size of technology s in country c.

To compute FF technology weights wisc we use a correspondence between the FF technolog-

whole sample period. If changes in FF prices affect the country mix of the patent portfolio or the size of the FF
market, not fixing the weights might feed back into the prices, causing potential endogeneity.
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ical areas and oil, gas or coal fuels as provided in Lanzi et al. (2011). For instance, technologies

in the field of production of fuel gases by carburetting air are assigned to the market size of

electricity output from coal. For those FF innovations without such a correspondence, we assign

the weighted average market size of all three fuel sources. Finally, we also compute firm-specific

REN market sizes for firms innovating only in FF technologies. To do so, we assign country-

level market size averaged across all REN technologies, also using the relevant country-weights

(wik). We proceed in a similar manner to assign FF market sizes to firms that innovate only in

REN technologies.

Knowledge stocks are computed using the perpetual inventory method as KSit = (1 −

δ)KSt−1 + Pit, where δ is the depreciation rate and Pt is the total number of patents filed by

firm i at time t.

6.4 Methodology and data cleaning of the Orbis dataset

To construct the firm-level financial variables, we follow the following steps for data cleaning as

in Kalemli-Ozcan et al. (2015).

1. We check the consistency of accounting identities (ratio should not be larger than 10

• fixedassets-tangiblefixedassets-intangiblefixedassets-otherfixedassets)/fixedassets

• totalassets - fixedassets-currentassets)/totalassets

• noncurrentliabilities - longtermdebt - othernoncurrentliabilities)/noncurrentliabilities

• currentliabilities - loans - creditors - othercurrentliabilities)/currentliabilities

• totalsharehfundsliab-loans)/totalsharehfundsliab

• totalsharehfundsliab-longtermdebt)/totalsharehfundsliab

2. We drop the entire company (all years) if total assets is negative in any year.

3. We drop the entire company (all years) if sales is negative in any year.

4. We drop the entire company (all years) if tangible fixed assets (such as buildings, machin-

ery, etc) is negative in any year
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5. For some firms, there are some inconsistencies in the units of financial variables (as noted

by Kalemli-Ozcan on p.29). The moment of switch in units coincides with an “unreason-

able” move of total assets, often clustered around the year 2000. To solve for this, we

focus on firms with total assets above 1 million USD.

6. We also winsorize all financial variables by trimming the data at 1
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Table 7: Summary Statistics for ‘mixed firms’ patenting in both REN and FF (N

Mixed firms
Mean SD 50th perc. 75th perc. Min Max

CFt−1 0.110 0.219 0.091 0.140 -0.565 4.529
CashHoldingt−1 0.120 0.379 0.047 0.129 0.000 6.172
NetWorkCapitalt−1 0.022 0.1.9 0.006 0.053 -0.764 0.980
Dbtt−1 0.061 0.0802 0.000 0.024 -0.794 17.84
Stkt−1 0.018 0.168 0.001 0.005 0.000 3.727
Salest 1.345 3.444 1.03 1.48 0.002 76.72
Total Assetst 25,874 51,789 4,279 26,715 18.14 379,679
Aget 51 38 43 78 2 149
Employeest 10,873 24,874 1,356 9,457 0 196,880
REN patentst 0.297 0.791 0 0 0 7
FF patentst 1.513 5.479 0 1 0 57
All patentst 44.32 136.1 8 38.5 0 1,518
Average over firm-year observations, 1995-2009: Number of firm-year observations: Mixed
firms N=528 (90 firms).

7 Summary statistics on mixed firms
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