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AGENT-BASED COMPUTATIONAL 
MODELS

Computational modeling is a powerful, ver-
satile tool for the analysis of complex social 
phenomena. Historically, scholars used com-
putational modeling to investigate abstract 
causal relationships in artificial settings, 
highlighting simple but counter-intuitive 
dynamics. Seminal examples include work 
by Thomas Schelling on the drivers of segre-
gation (Schelling, 1971), Robert Axelrod on 
the evolution of cooperation (Axelrod, 1984), 
Joshua Epstein and Robert Axtell on artificial 
societies (Epstein and Axtell, 1996), and 
Palmer et  al. on artificial stock markets 
(Palmer et  al., 1999). These early applica-
tions influenced subsequent research, includ-
ing notable studies on the formation and 
dissolution of nation-states after the end of 
the Cold War (Cederman, 1997), the dynam-
ics of ethnic violence and genocide (Bhavnani 
and Backer, 2000), and more recently civil 
violence in Baghdad and Jerusalem 

(Bhavnani et  al., 2014; Weidmann and 
Salehyan, 2013).

In contrast to consolidative models, which 
typically involve the development of ‘model’ 
systems to represent ‘real-world’ settings 
with measurable physical characteristics (for 
weather forecasts, see Gneiting and Raftery, 
2005; Skamarock and Klemp, 2008), explor-
atory computational models stop short of 
formalizing the complexity of social sys-
tems (Bankes, 1993). Given the difficulty 
of fully observing, theorizing and validating 
processes in social and natural systems, our 
approach builds on work that is explora-
tory, not consolidative, in nature. One class 
of exploratory computational models used in 
the social sciences is agent-based computa-
tional modeling (ABM) (for an overview, see 
de Marchi and Page, 2014).

A key property of ABM is the specifica-
tion of simple rules from which complex 
outcomes emerge. As such, an ABM may be 
specified as a non-linear function that relates 
combinations of inputs and parameters to 
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outcomes. ABMs are typically composed of 
agents, decision-making heuristics, an inter-
action topology and a non-agent environ-
ment (Epstein, 1999). Agents in an ABM can 
represent individuals (Bhavnani et al., 2008; 
Epstein, 2002), groups (Bhavnani et  al., 
2009; Kollman et  al., 1992) or institutions 
(Cederman, 1997), to name a few possibili-
ties. In this regard, the approach provides a 
high degree of flexibility or **granular-
ity**, given the ability to integrate phenom-
ena specified at different scales. ABMs are 
process-oriented and lend themselves well to 
studying dynamics, in contrast to approaches 
that tend to be more equilibrium-centered.

In most formulations of ABM, agents are 
endowed with a range of characteristics and 
decision-making heuristics. Individual agents 
may learn or adapt their behavior based on 
their own experiences, driven by heuristics 
or imitation, or change may be effected for 
a population of agents by means of evo-
lutionary selection (Kollman et  al., 1992; 
Laver, 2005; Mitchell, 1996). The interaction 
topology specifies how agents interact with 
each other and their environment, the latter 
being composed of physical features such 
as geography or topography (Axtell et  al., 
2002; Epstein, 2002) or various states of 
the world (Axelrod, 1984; Nowak and May, 
1992; Tullock and Campbell, 1970). These 
elements constitute the key components of 
an ABM, which is run repeatedly to identify 
causal mechanisms, observe relationships, 
patterns and emergent outcomes, and explore 
counterfactual scenarios.

ABMs lend themselves well to the analy-
sis of complex social phenomenon, in par-
ticular where ostensibly simple decisions 
have unexpected consequences (Epstein, 
1999). Yet, while agent-based models have 
notable strengths, they are not immune to 
criticism (Richiardi et al., 2006). A notable 
weakness of ABM is the tendency to include 
too many factors and interactions, given the 
ease with which these may be specified. As 
a rule of thumb, a model becomes too com-
plicated when comprehensive exploration 

of the comparative statistics for each model 
parameter is infeasible (see Lustick et  al., 
2004). Under these circumstances, it is virtu-
ally impossible to determine what is driving 
model results. Yet another flaw is the lack of 
relevant theoretical and empirical anchors, 
which result in unrealistic or even arbi-
trary model specifications. These anchors 
are essential to address the identification 
problem – the notion that multiple plausible 
mechanisms may explain a given outcome 
(Fisher, 1966). This chapter provides prac-
tical advice for designing, implementing  
and using computational models that are  
evidence-driven and designed to address 
these shortcomings.

EVIDENCE-DRIVEN COMPUTATIONAL 
MODELS

The evidence-driven modeling (EDM) 
framework rests on three methodological pil-
lars: agent-based modeling (ABM), contex-
tualization using geographical information 
systems (GIS) and empirical validation. 
EDM harnesses the strengths of ABM in 
capturing both social complexity (e.g., the 
heterogeneity of actor beliefs, preferences, 
attitudes and behaviors as well as the charac-
teristics of specific institutional settings and 
local environments) and causal complexity 
(including questions about who interacts 
with whom, when, where and with what 
effects), while simultaneously achieving a 
high degree of real-world correspondence 
and resonance. The combination places EDM 
squarely at the intersection of theory and 
empirics.

Notable examples of EDM include studies 
about civil violence in Jerusalem and Baghdad 
(Bhavnani et  al., 2014; Weidmann and 
Salehyan, 2013), neo-patrimonial networks 
(Geller and Moss, 2008), social inequality  
in pastoralist societies (Rogers et al., 2015), 
the rise and fall of the Anasazi people in  
what is now the Southwestern United States 
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(Axtell et al., 2002), social capital and civic 
culture in Italy (Bhavnani, 2003), legislative 
politics (Laver et al., 2011), party competition 
(Laver and Sergenti, 2011) and the occurrence 
of burglary (Malleson and Birkin, 2012). The 
diversity of research demonstrates the util-
ity of combining computational models with 
rich empirical data – data that are spatially 
and temporally disaggregated – to analyze 
the links between micro-level dynamics and 
emergent, macro-level outcomes.

Where other, more aggregate analyses 
yield inconclusive results, EDM enables 
researchers to adjudicate between alterna-
tive explanations and reveal complex, con-
ditional relationships and inter-dependencies 
that would otherwise be difficult to detect 
(Camerer, 2003; Kim et  al., 2010).2 In par-
ticular, EDM makes it possible to specify 
causal mechanisms in ways that are suf-
ficiently intricate, conditional and, thus, 
ultimately realistic, while maintaining the 
ability to go beyond purely exploratory mod-
eling by means of rigorous empirical testing. 
And in contrast to experimental approaches 
that control for contagion and spillover, 
EDM explicitly incorporates these ostensible 
threats to validity as part of the causal chain, 
for example by endogenizing the effects of 
geographical proximity and the heteroge-
neity of covariates across spatial units. The 
more specific benefits of EDM include the 
following:

1 Model Topography: The ability of EDM to har-
ness GIS, in conjunction with empirical data, 
enables realistic topographies to be substi-
tuted for the abstract grids characteristically 
used in ABM. As such, the landscapes used in 
EDM more closely represent actual physical or 
social inter-dependencies, capturing complex, 
often endogenous relationships among adjacent 
units, rather than controlling for these relation-
ships statistically or by means of experimental 
design.

2 Agent Granularity: EDM can simultaneously 
accommodate data of different spatial and tem-
poral resolution, whereas other methodologies 
are often wedded to the use of specific, fixed 

units. In contrast to ABM, these different units 
of analysis correspond to empirical observations 
and capture dynamics at meaningfully interlinked 
levels, e.g., individual decision-makers interacting 
with groups.

3 Data Imputation: EDM is typically used in data-
rich contexts but also excels in data-poor con-
texts, where information on relevant indicators 
suffers from incompleteness, a lack of syn-
chronization, mismatched units of observation, 
and differing levels of detail. Imputation in 
EDM works by seeding a model with poten-
tially sparse empirical data, and then permitting 
model dynamics to evolve endogenously. The 
closer simulated outcomes are to empirical 
trends, the better the imputation. The estimation 
of different parameters across contexts, using 
the same model, is one way to increase model 
robustness.

4 Identification: As with ABM, EDM can be used 
to  explore relationships between or adjudicate 
among competing micro-level explanations, rely-
ing on methods for data construction, such as 
participant observation, expert or field inter-
views. Insights from these methods help ground 
a model, ensuring that researchers `get the story 
right’ and tailor the model to the specificities of 
a given context.

5 Counterfactual Analysis: Once a model is cali-
brated and empirically validated, counterfactuals 
can be devised by adjusting values of certain 
parameters, including those capturing micro-
level dynamics and the empirical context, or by 
introducing new parameters. The results, pro-
duced under an assortment of `what-if’ scenarios, 
offer an indication of what the world could 
look like if empirically observed trends were to 
change. In essence, this option enables experi-
mentation through simulation. Short of true out-
of-sample forecasts, counterfactual experiments 
make it possible to undertake evidence-driven 
forecasting.

In the remainder of this chapter, a step-by-
step discussion guides the reader through the 
use of EDM in the Modelling Early Risk 
Indicators to Anticipate Malnutrition 
(MERIAM) project. We provide further detail 
on the building blocks for EDM, as well as 
on the choices and practical challenges of 
using the approach. Our discussion is 
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intended to serve as a point of departure for 
conducting research with EDM.

EVIDENCE-DRIVEN MODELING OF 
MALNUTRITION

The MERIAM project illustrates how the 
EDM approach can be applied, from initial 
conception to final, policy-relevant applica-
tion. MERIAM is a four-year project funded 
by the UK government, which brings together 
an inter-disciplinary team of experts across 
four consortium partners: Action Against 
Hunger, the Graduate Institute of International 
and Development Studies, Johns Hopkins 
University and the University of Maryland. 
MERIAM’s primary aim is to develop, test 
and scale up models to improve the predic-
tion and monitoring of undernutrition in 
countries that experience frequent climate- 
and conflict-related shocks.3

In 2017, the number of undernourished 
people was estimated at 821 million; this is 
closely associated with the spread of armed 
conflict (FAO et  al., 2018). Regions across 
Nigeria, South Sudan, Somalia and Yemen 
face severe food insecurity, related in no 
small measure to their exposure to conflict 
as well as a host of other characteristics that 
increase vulnerability to famine. The gravity 
of these situations and high interest among 
stakeholders serve as inspiration for devis-
ing effective means of forecasting risks to 
better anticipate crises and guide appropriate 
responses.4

The research team at the Graduate Institute 
is tasked with the development of an EDM 
to analyze the effect of household-level deci-
sions on nutrition-related outcomes (e.g., 
acute malnutrition and resilience), account-
ing for variation in household characteristics; 
local, contextual factors; and more macro- or 
aggregate-level covariates. How households 
adapt their behavior, changing or diversify-
ing sources of household income in response 
to stressors and shocks, may serve to improve 

or worsen a household’s resilience to food 
insecurity over time. We develop and validate 
our EDM based on the case of Karamoja, 
Uganda, and subsequently expand our model 
framework to other cases in sub-Saharan 
Africa.

We use this project – and, in particular, the 
application of our approach to study malnu-
trition in Karamoja – as an example of apply-
ing cutting edge computational modeling 
techniques to a highly relevant policy issue. 
The ‘entry-point’ for the use of EDM is an 
abundance of theoretical knowledge on the 
issue, the complexity of interactions of the 
numerous factors that influence malnutrition 
outcomes at the household level and the need 
for a systematic, reliable and transparent 
forecasting technique. At present, practition-
ers and policymakers tasked with anticipat-
ing changes in the risk of acute malnutrition 
need to combine expert knowledge on mal-
nutrition, including a deep understanding of 
its causes in particular cases, with statisti-
cal analysis of data from various sources on 
a regular basis. A prominent example in the 
context of sub-Saharan Africa is the Famine 
Early Warning Systems Network (FEWS 
NET), which classifies a country’s risk of 
acute food insecurity, relying on expert dis-
cussions and analysis mainly of remote-
sensing, market price and trade data. The 
outcome is an indicator for food insecurity 
on a five-point scale, ranging from ‘Minimal’ 
to ‘Famine’, with ‘near’-term and ‘medium’-
term forecasting windows of up to seven 
months (see IPC 2.05).

There are several potential weaknesses 
inherent to such an approach. First, the link 
between data and projected food insecurity 
lacks formalization (the scenario-building 
process is interpretive) and transparency (it is 
unclear how a particular prediction is made). 
In a related vein, expert discussions underly-
ing the data analysis are undocumented for 
end-users, making comparisons of forecasts 
by different experts problematic should inter-
pretations vary.6 And finally, predictions of 
food insecurity by livelihood zone obscure the 
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relative weight of various risk factors and their 
effects at more disaggregated spatial units.

Our EDM approach attempts to address 
these weaknesses. First, we harness avail-
able expertise on food security and malnu-
trition, relying explicitly on expert surveys, 
to develop a theoretically grounded com-
putational model. Second, we use existing, 
household-level data and household surveys 
conducted in the field to empirically contex-
tualize and validate the model for a set of sub-
national regions that vary in terms of their 
incidence and prevalence rates, livelihood 
zones, climate conditions and history of con-
flict. Third, we provide a tool that stakehold-
ers can use to construct acute malnutrition 
scenarios across diverse contexts, exploring 
the relation between shocks and stressors, on 
the one hand, and more immediate and long-
term outcomes on the other. In the section that 
follows, we provide an in-depth example of 
the EDM approach, beginning with why we 
believe this is an appropriate methodological 
choice. We then provide an overview of the 
model development process, data construc-
tion, model implementation, refinement and 
validation. Lastly, we discuss how the vali-
dated EDM can be used for scenario-based 
analyses and how its results can be presented 
to expert users and relevant stakeholders.

A STEP-BY-STEP GUIDE TO  
THE EDM APPROACH

The MERIAM project seeks to identify how, 
in response to conflict and climate shocks, 
household-level decisions affect nutrition-
related outcomes – effectively unpacking the 
‘black box’ of household behavior. At the 
household level, our EDM analysis is moti-
vated by a set of fundamental questions that 
link household characteristics and behavior 
to acute malnutrition outcomes:

•	 Holding the context constant, why are some 
households affected by risk factors while others 
are not?

•	 To what extent do households within the same 
context react to risks in the same way?

•	 Is the same segment of a population recurrently 
affected, or is substantial flux observed?

•	 Do the risk factors for those affected remain the 
same year after year, or do they change over time?

•	 Does a given risk factor have the same effects 
across diverse contexts?

Our model uses resilience, the ability to cope 
with or adapt to various shocks and stressors, 
as a conceptual frame to investigate variation 
in nutritional outcomes in a manner that reso-
nates with development stakeholders (e.g., 
Boukary et  al., 2016; Food and Agriculture 
Organization of the United Nations, 2016; 
United States Agency for International 
Development, 2012; see Béné et  al., 2015). 
In this particular domain, a resilient house-
hold – and in the aggregate, resilient com-
munities, regions and countries – is better 
positioned to cope with the unfavorable 
effects of an exogenous shock, or has a 
greater ability to recover (say to pre-crisis 
intake levels of nutrition) in the aftermath of 
such a shock. Stakeholders may design inter-
ventions to boost endowments, moderate 
constraints, facilitate learning or strengthen 
systems for crisis management (Béné et al., 
2015), all of which should contribute to 
greater resilience to nutritional crises.

The development of our EDM may be 
broken down into the six steps illustrated in 
Figure 4.1.

1 Theoretical Grounding: the EDM is grounded in 
existing theoretical and empirical knowledge of 
the subject matter.

2 Data Construction: relevant data to seed and 
validate the EDM are collected, analyzed and 
formatted.

3 Model Implementation: a preliminary version of 
the EDM is implemented as a computer simulation.

4 Model Refinement and Cross-Case Validation: 
the model is refined through expert interviews, 
fieldwork and out-of-sample testing.

5 Counterfactual Analysis: a valid EDM is extended 
by implementing counterfactual, ‘what-if’ experi-
ments to explore how simulated trends are 
altered under different conditions.
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6 Model Uptake: suggestions to visualize and pre-
sent EDM results are put forth in an effort to 
make the model accessible to relevant end-users 
and stakeholders.

In each of these steps, the researcher makes 
consequential decisions that affect the out-
come of the EDM process. Yet by design, 
EDM makes these choices explicit and trans-
parent. And while computer simulations are 
not as well understood among social scien-
tists and policy makers, the basic intuition 
underpinning EDM is relatively simple, per-
haps more so than a statistical model that 
addresses similar questions.

Theoretical Grounding

First, we surveyed a diverse body of research 
on malnutrition, including detailed qualitative 
case studies (e.g. Hatløy et al., 1998; Manners, 
2014; Parker et  al., 2009), comprehensive 
‘broad-brush’ approaches that integrate a 
wide range of mechanisms to explain malnu-
trition (e.g., Young and Marshak, 2017) and 
statistical analyses (e.g., Ajieroh, 2009; 
Ehrhardt et al., 2006; Fotso, 2007). Like any 
computational approach, the internal validity 
of EDM depends, in no small measure, on 
prior, often qualitative work that describes 
social processes in their requisite complexity.

Second, we reviewed this work to map the 
relations between leading and underlying 
indicators, in an effort to identify the **core 

mechanisms** that characterize malnutri-
tion dynamics. The two defining categories 
into which these indicators fall are shocks 
and stressors. The first category of shocks 
includes the onset of a conflict, which usually 
has a sudden impact that is unanticipated by 
households. The second category of stressors 
accounts for the effects of longer-term or more 
gradual, recurring changes such as a  lack of 
rainfall, which may vary in intensity, includ-
ing its most extreme manifestation as drought.

Third, we examined context-specific 
mechanisms. In Karamoja, conflict has 
been endemic given the 20-year insurgency 
of the Lord’s Resistance Army (LRA), as 
well as more recent pastoralist conflicts 
that involved cattle raiding or rustling 
(DCAF-ISSAT, 2017; FEWS NET, 2005). 
This has had many negative effects on the 
Karamojong, including the loss of human 
lives, displacement, reduction in livestock, 
and the progressive spread of small arms 
used by herders for protection, indirectly 
contributing to an increase in violence 
(DCAF-ISSAT, 2017).

Our model evolved as we relaxed sim-
plifying assumptions and improved our 
understanding of malnutrition in Karamoja. 
Moving beyond an initial specification of 
households endowed with an unbounded abil-
ity to adapt behavior, we defined households 
as boundedly rational actors (Arthur, 1994),  
focusing primarily on food provision. The 
latest version of the model is depicted in  
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Figure 4.1 Model development process
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Figure 4.2. In each iteration and for every house-
hold, we calculate nutrition levels (ns) based 
on previous actions, a set of health- and food-
intake factors (hv, f), and exogenous constraints 
(X). Proportional to changes in ns, households 
adapt their behavior based on learning (λ): if 
ns is stable and sufficient to feed household 
members, the household continues to behave 
the way it did before. But if radical changes 
occur, households adapt their behavior either  
(a) randomly, (b) by copying a locally opti-
mal strategy from their neighbors, or (c) by 
combining existing strategies to create a new 
one (Holland, 1975; Kollman et  al., 1992; 
Krakauer and Rockmore, 2015; Mitchell, 
1996; Urbanowicz and Moore, 2009).

In the current formulation, sub-optimal 
behavior is the rule rather than the exception, 
and status-quo behavior is effectively rein-
forced if households attribute a worsening of 

their situation to previous behavioral changes 
rather than exogenous factors (see ‘probe 
and adjust’ in Huttegger et  al., 2014). The 
approach permits us to account for struc-
tural impediments to adaptation in a con-
text like Karamoja, while still allowing for 
household-level change, e.g., from pastoral 
to agro-pastoral food production (e.g., Mercy 
Corps, 2016; see also Stites and Huisman, 
2010). Note that the model, at this stage, may 
still be classified as an ABM. The next step is 
to construct the data necessary to enable the 
empirical contextualization of the model.

The process of theoretically grounded 
model development as is described here is 
prototypical, including the iterative refine-
ment of model mechanisms and their opera-
tionalization as the modeler’s understanding 
develops. At this stage, choices are made 
based on the best available insights on the 
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Figure 4.2 Flow diagram for MERIAM EDM
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case, bearing in mind the need for further 
refinement following fieldwork and empiri-
cal validation in the next stage.

Data Construction

The EDM approach relies on data for empiri-
cal contextualization. The quality of the data 
– its accuracy, resolution and coverage – ulti-
mately shapes our ability to seed and validate 
the model. A careful examination of data 
availability and quality is thus of paramount 
importance. In this section, we describe the 
main strengths and weaknesses of our house-
hold-level data for Karamoja, although our 
considerations may be generalized beyond 
the specifics of this case.

Our EDM is fundamentally about house-
hold characteristics and behavior, but it 
requires information exogenous to house-
holds as well, from district-level statistics 
about health facility capacities to more gran-
ular data at the grid or point level. Figure 4.3 
presents an overview of the data we use to 
seed and validate the MERIAM EDM.

For our analysis of household character-
istics and behavior in Karamoja, we utilize 
nutrition survey data provided by Action 
Against Hunger (2013). The dataset has two 
distinct advantages compared to other nutri-
tion surveys. First, it contains behavioral 
variables at the household level. Second, the 
dataset is longitudinal: it consists of six sur-
vey rounds between August 2010 and May 
2012, allowing us to validate and align the 
timescales of simulations against empirical 
outcomes repeatedly over this time period.

Our household-level data exhibits three 
principal weaknesses with respect to con-
struct validity, spatio-temporal precision 
and completeness. First, some household-
level variables do not measure the specific 
household attributes and behaviors we seek 
to model. For example, we use the variable 
‘food source’ as a measure for how house-
holds obtain food. But only the ‘most impor-
tant’ food source was measured in the survey, 

which means that we cannot observe whether 
households use other means to obtain food.

Second, the data are imprecise. They cap-
ture longitudinal trends, rather than following 
the same households over time. With panel 
data, we could seed and validate our EDM 
against the decisions and characteristics that 
each particular household makes over time. 
With trend data, this information exists at an 
aggregate level to the extent that we know, 
on average, households changed on the meas-
ured variables between samples.

In addition, our household data is spatially 
imprecise insofar as it is representative at the 
ADM1 district. Short of obtaining representa-
tive samples at lower levels of analysis, there 
are still ways to mitigate spatial impreci-
sion using imputation. For Karamoja, census 
data is only available at sparse intervals –  
no census was conducted between 2002 
and 2014, a period that saw a 2.4% popula-
tion growth in Karamoja (Uganda Bureau 
of Statistics, 2017). An alternative is to use 
remote-sensing data to estimate population 
numbers at the grid level.

The challenges to data quality from con-
struct validity, (lack of) precision and com-
pleteness recur across empirical settings 
and are by no means specific to the EDM 
approach. The ability to accommodate data 
at varying levels of granularity, though, is a 
strength of the approach. As such, we need 
not match empirical and simulated house-
hold characteristics at the same level of 
granularity, given that we measure other 
contextual factors related to conflict, climate 
and market prices (see Figure 4.3). Instead 
of joining data at the lowest common level 
granularity, each model component can 
be simultaneously specified/matched with 
empirical data at the maximal level of granu-
larity permissable.

Model Implementation

Several platforms are suitable for program-
ming an EDM, with a trade-off between 
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simplicity of use and performance, i.e., the 
ability to handle complex modeling setups. A 
popular and widely used solution is the 
NETLOGO platform (Wilensky, 1999), 
which is easy to learn but more restrictive in 

its capabilities. At the other end of the spec-
trum are powerful libraries such as the Repast 
framework in Java (North et  al., 2013) or 
MESA for Python (Masad and Kazil, 2015), 
both of which require greater customization. 

Household-Level 
Characteristics and Behavior

- Wasting mean → validate
- Food source
- Food consumption
- Food diversity
- Water source
- Bednet usage
- Human waste facilities
- Handwashing practices
- Illness 
- Vaccination
- Sex
- Age
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- Market prices
- Health infrastructure
- Population census
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Remote-Sensing Data

- Temperature
- Rainfall
- Vegetation
- Accessibility
- Population density

Event Data

- Conflict

Merge

Figure 4.3 Data construction overview
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The EDM discussed here uses a custom 
class-based implementation in Python. We 
note that the choice of programming lan-
guage and framework do not affect model 
outcomes – only the ease of use and the ulti-
mate runtime of the simulation.

In contrast, the operationalization of the 
model can have a profound impact. To opera-
tionalize model dynamics, it is necessary 
to specify the logical order of progression, 
sequence of actions and updates within the 
model – who does what, where and when and 
based on which information – paying close 
attention to attendant implications (Caron-
Lormier et  al., 2008). It follows that model 
heuristics can be universal or conditional, 
fixed or subject to change over time.

Consider, first, the problem of defining 
time progression within the model – the 
number of actions and updates that occur 
within a time step (e.g., an hour, day or year) 
to correctly reflect the timescales of the pro-
cesses the model seeks to represent. A com-
mon solution is to make this correspondence 
explicit in the definition of a model time step, 
i.e., define time progression in terms of the 
fraction of possible actions or updates per-
formed. For example, we consider a time step 
to have ended after updating the state of all 
households once. For the timescales of simu-
lated and empirical outcomes to align, any 
time dependent parameters in the model that 
have empirical equivalents (e.g., the rate at 
which households adapt their strategies) have 
to be scaled such that their timescale aligns 
with that of the observed empirical process.

Second, EDM use geographical informa-
tion for contextualization that ensures a high 
degree of correspondence between geogra-
phy and the model topology. Exactly how 
space is operationalized within the model 
reflects an explicit choice to be made by the 
researcher. A common choice of implemen-
tation that reduces computational complexity 
is to discretize physical space. For example, 
in the model for Karamoja, household loca-
tions are defined on an underlying regular 
grid that is dynamically generated using 

actual settlement locations and their associ-
ated densities. In order to account for both 
low and high population densities, we use 
data on population densities at the grid level 
such that the number of households in a grid 
approximates the population density in the 
corresponding area in Karamoja.

Choices related to model operationali-
zation are by no means simple or straight-
forward. To avoid influencing simulation 
outcomes or unwittingly introducing errors 
and artifacts, competing operationalizations 
of the same model mechanisms should be 
tested to ensure that a specific operationaliza-
tion is not driving simulation outcomes (see 
also Galán et al., 2009).

Analogous to testing in- and out-of-sam-
ple predictive power for statistical models, 
EDM are formally validated and calibrated 
to maximize the correspondence between 
simulation results and real-world outcomes. 
Figure 4.4 shows the full modeling cycle, 
from model operationalization and contextu-
alization to enumeration and calibration. For 
the Karamoja case, we identify the degree 
to which households are able to adapt to 
changing conditions that, all else equal, best 
explain the observed patterns of malnutrition. 
The closer the calibrated model approximates 
empirical outcomes, the greater the validity 
of the model predictions. Yet, quantitative 
agreement is not the only important measure. 
The parameters that best predict empirical 
outcomes must also reflect plausible dynam-
ics on the ground. Should this fail, further 
refinement and validation of the model are 
necessary.

The modeling cycle illustrated for 
Karamoja (Figure 4.4) serves as a template 
for identifying parameters that yield the clos-
est correspondence to real-world outcomes, 
a process that constitutes the core of the 
evidence-driven approach: given a model 
specification that formalizes our theoreti-
cal understanding of a process and data to 
seed the model (possibly at varying levels of 
granularity), what is the model with maxi-
mal explanatory power for our outcome of 
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interest? The parameter constellation of the 
‘best-fit’ model indicates which specific 
mechanisms in which constellation yields 
maximal agreement with empirical out-
comes. Clearly, there is no guarantee that the 
constellation is empirically plausible, which 
makes the step of model refinement and vali-
dation an essential part of the process.

Model Refinement and Cross-Case 
Validation

While our model framework is derived from 
the existing literature, in addition to which 
we have undertaken a limited set of inter-
views with experts outside of the region, 
ground-truthing the model in Karamoja is an 
integral part of our EDM approach. Absent 
fieldwork, we run the risk of misrepresenting 
the dynamics at the core of our model, in 
particular, those that concern agent decision-
making and behavior:

•	 Household decisions (ns, λ → S*): Who are 
household decision-makers? To what extent 
are ‘households’ independent decision-makers? 
Can they make decisions in the way we envi-
sion them? Which household characteristics are 
adaptable? If household characteristics change, 
what is the time scale? If households learn new 
strategies, what strategies are learned and how?

•	 Nutritional sufficiency (ns, hf,v): How do house-
hold decision-makers evaluate the nutritional 
intake of their children? What general knowl-
edge/awareness can we assume? What factors 
explain why some households cope/adapt suc-
cessfully, while others do not?

•	 Household and exogenous variables (hf,v, X): Is 
the relative importance of household and sys-
temic constraints in our model appropriately bal-
anced? What amount of agency can we attribute 
to households?

•	 Resilience (r): What types of resilience (coping 
vs. adaptation) can we expect in a context like 
Karamoja?

These and other questions pertain to core 
components of our model. They needed to be 
addressed with experts and government 

officials working on the ground, and more 
importantly with Karamojong households 
whose nutritional situation we seek to 
understand.

The relationship between model develop-
ment and field research can and should be 
treated as an iterative process. Multiple stages 
of model development can be interspersed 
with multiple rounds of field research. As 
such, the EDM approach is agnostic to the 
timing of fieldwork. A possible starting 
point is the development of a theoretically 
grounded model framework. A first round 
of field research can then be used to refine 
the model, identify relevant causal linkages 
and supply additional empirical input for the 
model. For MERIAM, we received some of 
our most valuable input through modeling 
exercises where we probed experts and house-
holds to make their ‘mental models’ explicit, 
through surveys and focus group discussions. 
Depending on one’s epistemological orienta-
tion and practical considerations, it is plausi-
ble to conceptualize a modeling framework 
inductively from preliminary field research.

Whereas ‘getting the story right’ in 
Karanoja was important, it is evident that an 
EDM initially developed and tested in one 
region need not be applicable to other con-
texts. Households may respond differently to 
the same exogenous shocks and stressors in 
ways that cannot be accounted for compre-
hensively in a single model specification. That 
said, re-building the entire model for each 
context analyzed is also unnecessary. Rather, 
a given model can be modified to incorporate 
contextual differences in a systematic manner, 
by identifying model prototypes that exhibit 
meaningful variation across key dimensions, 
and validating and refining the model for each 
prototype.

A necessary first step involves the identi-
fication of similar patterns across contexts, 
with respect to either (causal) drivers, mecha-
nisms, behaviors or outcomes, as a means of 
building a set of computational model pro-
totypes. For example, prototypes for mal-
nutrition dynamics could be constructed to 
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account for similar patterns of incidence and 
prevalence in wasting across contexts. The 
selection of prototypical cases that exhibit 
consequential variation, both geographically 
and temporally, is essential to ensure that an 
EDM generalizes beyond the confines of a 
particular case. More specifically, a different 
case enables us to refine the model with a view 
toward maximizing external validity, while a 
similar case allows us to verify and strengthen 
the internal validity of the model in another 
context. For the MERIAM project, analyzing 
sub-national cases over finer-grained tempo-
ral units was preferable to selecting country-
years as units of observation.

As a second step, case-specific grounding, 
data construction, and fieldwork are repeated 
for every model prototype to which the EDM 
will apply, building on prior work where pos-
sible, given that much of the data on exog-
enous factors is constructed uniformly across 
contexts (e.g., remote-sensing and conflict 
data). For our second prototypical case, West 
Pokot in Kenya, we assessed historical and 
cultural differences relative to Karamoja, 
as well as changes in salient causal mecha-
nisms. Finally, we adapted the field survey 
used in the Karamoja case for the particulari-
ties of this context, making only the minimal 
changes required.

So while the classic trade-off between exter-
nal and internal validity applies in no small 
measure, EDM can be systematically extended 
to produce valid results across contexts, while 
retaining internal validity for specific cases.

Counterfactual Analysis

Counterfactual analysis can be divided into 
two types of ‘what-if’ scenarios for EDM: 
those that relate to model parameters – deter-
minants of model dynamics that have no 
direct empirical referent and were inferred 
from the model – and those that relate to 
model inputs specified by empirical data.

Counterfactual analysis for model parame-
ters is equivalent to considering comparative 

statistics. Here, one sets all model parameters 
to their optimal values, except for a particular 
parameter whose influence we seek to assess. 
For example, the effect of a household’s pro-
pensity to adapt could be analyzed, all the 
more tellingly if the effect is non-linear, i.e., if 
small changes in household behavior produce 
significant changes in nutrition outcomes.

Counterfactuals may also be conducted for 
model inputs. Instead of seeding all inputs 
with empirical data, one can use exogenously 
determined values for one or more inputs, 
treating them as equivalent to parameters. 
Examples include testing the impact of cli-
matic and economic shocks, as well as the 
source, timing, location, type and scope of 
interventions (e.g., food imports, humani-
tarian assistance from international sources 
and education designed to shape household 
behavior) on household behavior and mal-
nutrition. Stakeholders can then use these 
insights to understand the likely effects of 
different interventions under a variety of con-
ditions across different contexts. While this 
type of counterfactual analysis is best con-
strained to the period for which the model 
was optimized – in other words, within sam-
ple – out-of-sample counterfactual analysis, 
including forecasting, is feasible when one 
clearly specifies how parameters and empiri-
cal inputs might change in the future.

It follows that EDM are well suited to pro-
viding data-driven, scenario-based analyses, 
with the caveat that underlying assumptions 
are transparently communicated. The EDM 
developed as part of MERIAM forms the 
basis for a tool to make scenario-based fore-
casts of malnutrition and explore the efficacy 
of various interventions in response to cli-
mate- or conflict-related shocks. A concern, 
then, is to develop an effective means to com-
municate the methodology beyond a purely 
academic or expert audience.

Model Uptake

The EDM approach requires a combination 
of technical knowledge and relevant domain 
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expertise. As such, the specification, con-
textualization, validation and refinement of 
an EDM is typically undertaken by aca-
demic researchers or trained experts. On 
the other hand, if done correctly, the kinds 
of scenario-based analysis for which EDM 
is suited may be of immediate interest to 
practitioners, subject experts or policy 
makers largely unfamiliar with the method-
ology. The question then concerns how the 
EDM methodology can be pitched to stake-
holders beyond a mere visualization of 
results, to provide a ‘feel’ for the model, its 
specificity and generalizability, and its use 
as a tool for making evidence-driven policy 
decisions.

With an expert and practitioner audience 
in mind, we plan to complement an aca-
demic research paper with a policy brief 
written for a general, non-specialist audi-
ence. Rather than using technical jargon, 
a brief would explain the steps involved in 
model construction, much in the way that 
this chapter does, highlighting key policy-
relevant insights. The brief would clearly 
communicate the limits and uncertainties 
associated with the EDM scenario-based 

forecasts, considering the effect of specific 
interventions on malnutrition outcomes dis-
cussed above.

While a brief will certainly help communi-
cate policy-relevant insights, it falls short of 
providing a true ‘feel’ for the EDM. The only 
way to achieve this is by developing a tool 
with an interactive graphical user interface 
(GUI). Such a tool would preserve the full 
complexity of the EDM while allowing non-
expert users to easily engage with the model 
and translate output. The tool may also 
require an expert to revise a particular model 
specification for a new case, after which the 
GUI will perform its intended function.

Figures 4.5 and 4.6 depict a mock-up of 
the Simulating Acute Malnutrition Toolkit 
(SAMT). At the center of the GUI is a 
trend-based forecast and a map of the region 
being analyzed. Users can switch between 
outcomes (e.g., resilience or wasting preva-
lence) and select the time point for which 
outcomes on the map would be displayed. 
The heat map shows normalized levels of 
the selected outcome (here, resilience) at a 
fine-grained level of analysis for the selected 
time point, with the slider below the time 

Figure 4.5 Mock-up of SAMT (main window)



THE SAGE HANDBOOK OF RESEARCH METHODS IN POLITICAL SCIENCE AND IR74

series graph. Bars in the time series indicate 
the intensity of shocks and aid interventions, 
respectively. The degree to which the simu-
lated results correspond to empirical data is 
specified at the top of the interface.

GUIs and software tools for decision 
support are generally starting to gain trac-
tion. These include a large array of domain-
unspecific tools for data handling and 
visualization, as well as more specific pol-
icy support tools in diverse domains such 
as epidemiology (den Broeck et  al., 2011) 
and public safety (Chooramum et al., 2016). 
Making EDM accessible to others requires 
this kind of explicit engagement with stake-
holders, allowing them to develop a better 
intuition for the approach.

CONCLUSION

Evidence-driven computational modeling 
effectively harnesses the strengths of ABM, 
while achieving a high degree of real- 
world correspondence and resonance. As our 

discussion of the MERIAM project demon-
strates, the EDM approach incorporates  
contextual knowledge and theoretical  
insight, captures complex spatio-temporal 
inter-dependencies, explicitly accounts for 
endogenous relationships, uses realistic 
topographies and harnesses data at varying 
levels of measurement. The combination 
places EDM at the intersection of theory and 
empirical work. For the MERIAM project, 
we harness the power of EDM to make 
 scenario-based forecasts and undertake coun-
terfactual analyses, developing a tool for 
policy makers tasked with addressing the 
high-stakes problem of malnutrition. The 
development of the MERIAM EDM has been 
elaborate, costly and time consuming, given 
that many of the standard elements of research 
design in political science – theory building, 
case selection, data collection and fieldwork –  
comprise the approach. We believe the contri-
bution to evidence-driven decision-making is 
well worth the effort, and trust that the proce-
dures and best practices outlined in this chap-
ter will result in the development and use of 
EDM across diverse domains.

Figure 4.6 Mock-up of SAMT (intervention configuration)
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Notes

 1  The authors thank Alessandra Romani from the 
Graduate Institute, Geneva for helpful comments 
on draft versions of this chapter. This document is 
an output from a project funded by UK Aid from 
the UK Department for International Development 
(DFID). The views expressed do not necessarily 
reflect the UK government’s official policies.

 2  Take, for example, contact theory. Researchers have 
found empirical evidence to support the notion that 
increased inter-group contact leads both to higher 
and lower levels of violence. EDM have been used 
to explore the conditions that give rise to these 
divergent outcomes. For a detailed discussion, see 
Bhavnani et al. (2014).

 3  Visit https://www.actionagainsthunger.org/meriam  
for more information on the project.

 4  This description, drawn from the MERIAM project 
proposal, serves as the overarching motivation for 
the larger project as well as our specific contribu-
tion to the same.

 5  http://fews.net/IPC.
 6  See Samimi et  al. (2012) for an earlier critique, 

and http://fews.net/our-work/our-work/scenario- 
development for details on the FEWS NET  
scenario-building process we seek to comple-
ment with our approach.
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