

CTEI WORKING PAPERS

UNEXPECTED PRICING-TO-MARKET IN GOODS CLASSIFIED AS HOMOGENEOUS^a

Valentina Rollo^b

<u>Abstract</u>

Abstract. This paper uses cross-country, firm-level, panel data to study how exporters from Low Income Countries (LICs) adjust their prices according to their trade partners' characteristics. The results show that the free on board (fob) price of exports is differentiated across markets in all countries in the sample. This differentiated pricing is not commonly associated with small economies, which are normally considered price takers. This finding confirms that the law of one price does not necessarily apply to exporters in small economies. Most importantly, in contrast to existing evidence, pricing-to-market is not confined to differentiated goods, and rather also applies to homogeneous goods. In addition, this paper shows how the disparate tastes across importing countries lead pricing-to-market in homogeneous goods exported by LICs - under the assumption of variable demand elasticity of substitution (for each product across destinations).

Keywords: unit values, pricing-to-market, firm level data, variable demand elasticity of substitution.

JEL Classification: F1, C33

_

^a I thank Prof. Richard Baldwin and Prof. Nicolas Berman for guidance and support, and Alessandro Nicita Marcelo Olarreaga and Lorenzo Rotunno for helpful suggestions. I am also thankful to Denisse Pierola and Ana Fernandes for their comments and help. Also, I would like to thank seminar participants from the Graduate Institute, the 2012 ETSG Leuven Conference and the 2012 NCDE Gothenburg Conference and anonymous referees. This study is part of the research conducted under the Export Growth and Dynamics Project implemented by the Trade and International Integration Unit of the World Bank's Development Research Group. Finally, I gratefully acknowledge funding support from the SNF, Project Number PDFMP1_135148...

^b Graduate Institute of International and Development Studies, Geneva.

CENTRE FOR TRADE AND ECONOMIC INTEGRATION (CTEI)

The Centre for Trade and Economic Integration fosters world-class multidisciplinary scholarship aimed at developing solutions to problems facing the international trade system and economic integration more generally. It works in association with public sector and private sector actors, giving special prominence to Geneva-based International Organisations such as the WTO and UNCTAD. The Centre also bridges gaps between the scholarly and policymaking communities through outreach and training activities in Geneva.

www.graduateinstitute.ch/ctei

1. Introduction

The variation of export prices across destinations was first defined by Krugman (1986) as pricing-to-market. This paper relates Krugman's pricing-to-market to the heterogeneous firms' literature, and more specifically to the strand of research that analyses price adjustments to identify firm level quality or productivity competition - rather than adjustments to exchange rate shocks. The empirical literature suggests that adjustments actually do happen and that more investigation is needed to better explain the patterns observed across different countries. Most studies in this literature (with the exception of a recent background paper by Asprilla *et al* (2014) try to identify evidence of price differentiation in middle-to high-income countries, with a focus on the manufacturing sector. My paper expands on this literature by focusing on a group of Low Income Countries (LICs), and includes all products, rather than only manufacturing products.

The question of if and how exporting firms in LICs conduct pricing-to-market has so far received limited attention. Rather research has centered on trying to understand the factors that determine export flows and export diversification by looking at trade value or the number of destinations and products exported. This paper contributes to this literature by introducing the possibility that LICs can diversify their exports not only by exporting different products, but also by exporting different qualities/varieties of the same product to different destinations. It does so by focusing on export prices, rather than on export flows or the number of products/destinations. This implies that the baseline assumption that LICs exporters, as price-takers, cannot diversify their exports over the quality spectrum may need to be abandoned. ⁴

Agricultural economists have long been interested in markets for products that are differentiated by quality. As Unnevehr *et al* (2010) explain in their review of the relationship between food and consumer economics, as consumers demand for premium quality, healthier, safer, and more environmentally friendly food products has increased, firms have responded by marketing quality-differentiated foods with explicit claims. In fact, agricultural economics commonly divides the global market of several "homogeneous" goods between the commodity market and the highly diversified specialty market. The latter can offer higher profit margins and enable farmers to differentiate their products through origin and flavor. Opportunities for farmers to access these specialized markets are increasing as consumer demand continues to grow for higher-quality, sustainably produced products. These findings provide justification for this paper's focus on price-maker behavior across LICs, and its search for pricing-to-market in both differentiated and, most importantly, homogeneous products.

To accomplish this research objective, I use a firm-level dataset of exporters from several countries: Albania, Burkina Faso, Bulgaria, Jordan, Malawi, Peru, Senegal, Tanzania and Yemen.

³ The lack of consensus is due to some models (constant markup models such as Melitz 2003) predicting no relationship between export prices and the characteristics of trade partners, and other models predicting a relationship which is either competition driven (Melitz and Ottaviano, 2008) or quality driven (Baldwin and Harrigan, 2011).

⁴ In the robustness section the analysis is repeated at the eight digit level of the Harmonized System.

Access to these data overcomes data availability constraints that have limited, until recently, empirical work on the pricing behavior of LIC's exporters. By accessing this disaggregated information, this study explores the pricing behavior of firms across destinations and examines whether the observed patterns are led by heterogeneity of "tastes" across destinations. This analysis relies on the methodology adopted by Manova and Zhang (2012), and builds on Rollo (2012) by providing evidence for a group of countries, thus overcoming the single-country study approach that constrained the latter paper.

Specifically, my results show that exporters serving multiple destinations have a higher dispersion of prices across markets, which indicates that firms charge different prices if they serve multiple destinations. This result is valid in both Upper Middle Income Countries (UMICs) (Bulgaria, Jordan and Peru) and Lower Middle Income (LMICs) and Low Income Countries (LICs) (Albania, Burkina Faso, Malawi, Senegal, Tanzania and Yemen). These findings confirm that the law of one price does not necessarily apply to exporters from small economies and provide evidence of a pricing behavior not usually associated with LICs.

The primary difference from Manova and Zhang (2012) – and the related literature – hinges on the result that prices are differentiated across destinations in both homogenous and differentiated goods. These results stand in contrast to the findings of previous studies in the trade literature and present an unexpected result that could open areas for future research. For example, allowing for the possibility that food products can be vertically differentiable amplifies the spectrum of existing opportunities for developing countries. Even LICs could exploit product differentiation and market niches in countries where consumers are willing to pay more for products that satisfy specific quality characteristics.

The importance of the diversity of tastes across destinations is then tested in an extension of the analysis. By using the demand elasticity of substitution estimated by Kee, Nicita and Olarreaga (2008), it is possible to show that pricing-to-market in homogeneous goods exported by LICs applies only to goods that are characterized by highly heterogeneous tastes across destinations. Whereas differentiated goods are always priced to markets, regardless of the taste heterogeneity, in all countries (UMICs, LMICs and LICs). These findings highlight the importance of considering pricing-to-market from both the supply and the demand side.

The remainder of the paper is organized as follows: Section 2 reviews the theoretical and empirical framework underlying this work. Section 3 introduces the data used in this analysis and highlights some of its features and characteristics. Section 4 describes the analytical framework and defines the hypothesis to be tested in the empirical section. Section 5 reports the results of the empirical analysis, while Section 6 performs some robustness checks. Finally, Section 7 concludes.

2. Previous findings and theoretical underpinnings

This paper relates to the extensive trade literature on exporters' price heterogeneity across export markets. The possibility that exporting firms can adjust their mark-up by destination as a reaction to changes in exchange rate has been documented in Dunn (1970) and Mann (1986) before being defined by Krugman (1986) as pricing-to-market. Such concept has subsequently been vastly explored to explain empirical patterns in international economics, such as incomplete exchange rate pass-through to exporter prices. The strand of literature on exchange rate pass-through is so extensive that it would be impossible to include an exhaustive list. A high number of empirical studies have searched for evidence of pricing-to-market in both industrial and agricultural products, at product level and at more disaggregated firm-level (for instance Knetter, 1989, 1993; Marston, 1990; Gagnon and Knetter, 1995; Falk and Falk, 2000; Glauben and Loy, 2003; Alessandria and Kaboski, 2011; Berman et. al. 2012; and Pall *et al*, 2013, *et cetera*), and the results are very heterogeneous and do not allow drawing general conclusions. As a consequence the only conclusion to be drawn is that pricing-to-market behavior differs across countries and export industries (Pall *et al* 2013).

The analysis undertaken in my work also relates to the more general literature that focuses on destination specific characteristics that should determine the variation in export prices (at product or firm level) across destinations. These destinations characteristics range from distance (Hummels and Skiba, 2004; Baldwin and Harrigan, 2011; Martin, 2012), to income (Hummels and Klenow, 2005; Hallak, 2006; Bastos and Silva, 2010; Khandelwal, 2010; Hallak and Schott, 2011), trade costs (Feenstra, 1989; Kreinin, 1961; Mallick and Marques, 2007; Atkeson and Burstein, 2008; and Yu, 2010) and even income inequality (Fajgelbaum *et al*, 2011; Bekkers *et al*, 2012; Flash and Janeba 2013).

Moreover, the use of firm level data highlights the importance of the heterogeneous firms' literature, where different models predict constant or variable prices across destinations. Depending on the type of competition that characterizes the market, it is possible to classify the main models explaining firm heterogeneous performance as:

- 1. price competition models: Melitz (2003) and Melitz and Ottaviano (2008), where better performing firms are characterized by higher productivity and lower marginal costs; and
- 2. quality competition models: Baldwin and Harrigan (2011), Antoniades (2008), and Fajgelbaum, Grossman, and Helpman (2011), where the quality dimension enters the model to explain why bigger and more productive exporters pay higher wages, use better inputs and have marginal costs increasing in quality.

In terms of price heterogeneity across destinations, in both price (Melitz, 2008) and quality (Baldwin and Harrigan, 2011) competition models that assume constant elasticity of substitution (CES) demand, all firms charge a constant mark-up over variable cost in every market. As a consequence, the fob price charged by a firm is determined only by marginal costs and not by the characteristics of the destination market. Melitz and Ottaviano (2008) modify the assumption of CES demand by including a linear demand and variable mark-ups. Therefore the

fob price depends on the degree of competition and other characteristics of a destination market: a firm might set different prices across destinations (pricing-to-market). The same linear demand is also included in Antoniades (2008), and Fajgelbaum *et al* (2011).⁵

Manova and Zhang (2012) is the main empirical reference for this paper. The authors analyze a custom database on Chinese firms and establish six stylized facts on the variation in export prices and imported-input prices across firms, products and trade-partner countries. The finding of relevance to this paper is the fifth stylized fact: across firms within a product, firms that serve more destinations offer a wider range of export prices. Predominantly, this pattern is more pronounced for products with greater scope for quality differentiation. In my paper I confirm that the fifth stylized fact from Manova and Zhang (2012) holds in a larger group of countries. However, differently from these authors, I find that pricing-to-market is not different in homogeneous and differentiated goods. Pricing-to-market in homogeneous goods was already found in Rollo (2012) in a single-country study on Tanzania.

The distinction between differentiated and homogeneous goods is a commonly used as a way to infer that pricing-to-market is led by quality attributes of exported goods. For this reason my paper also relates to the group of papers that look for evidence of quality differentiation, both across firms and across destinations. Looking at quality differentiation across firms, Hallak and Sivadasan (2008), and Iacovone and Javorcik (2008) find that exporting status and output prices are positively related. Crozet, Head, and Mayer (2009) find evidence that high-quality producers export to more markets, charge higher prices, and sell more in each market. Recent work from Flach (2014) shows evidence of quality differentiation within firms in a Brazilian dataset. As for quality differentiation across destinations, Brambilla, Lederman, and Porto (2012) and Bastos and Silva (2010), Hallak (2006), Hummels and Klenow (2005) and Fieler (2011) find that firms set higher prices in bigger, richer, and more distant countries. Also Görg, Halpern and Muraközy (2010) find a positive relationship between export unit values and distance and wealth of destinations, but a negative relationship between unit values and market size – as previously found in Baldwin and Harrigan (2011).

In sum, the empirical literature confirms that different firms charge different prices and that exporters do adjust their prices according to the characteristics of their trade partners. However, evidence of such behavior in LICs and in non-manufactured goods has been scarce, due to (until recently) limited availability of firm level data. Consequently, more investigation is needed to verify whether the patterns observed in the literature can be confirmed for small economies, more specifically LICs, normally considered price takers. This paper contributes to the literature by filling this gap.

Finally, this paper also relates to the strand of literature that builds upon the above mentioned trade models of monopolistic competition by focusing on the demand side, instead of the supply side. The importance of demand factors in explaining the variability in firm-level prices and sales across a range of export destinations has been highlighted in Eaton *et al* (2011), who find that firm efficiency is not the main determinant of sales variation across markets. Also, Kee and Krishna (2008) find that the correlation between firm-level sales of Bangladeshi firms in

.

⁵ I refer to Manova and Zhang (2012) for a detailed review of heterogeneous firms models in the trade literature.

different destination markets is very low. A recent paper by Di Comite *et al* (2014) proposes a model where consumer preferences are asymmetric across varieties and heterogeneous across countries. This literature relates to my paper, which - after finding evidence that exporting firms are able to conduct pricing-to-market in all exporting goods - tries to establish whether the ability to price discriminate depends on the importer's demand elasticity.

3. Data and descriptive statistics

The data employed in this paper are transaction-level customs data for the period 2000-2011. The countries included in this study are Albania, Burkina Faso, Bulgaria, Jordan, Malawi, Peru, Senegal, Tanzania and Yemen. More detail is reported in Table 1. The data was collected by the Trade and Integration Unit of the World Bank Research Department, as part of their efforts to build the Exporter Dynamics Database (EDD). The sources for the data for each country and the cleaning procedure used to obtain the data are detailed in the Annex of Cebeci, Fernandes, Freund and Pierola (2012).

The dataset received contains annual information on shipments of exporters for nine countries.⁶ Each annual observation contains information on arbitrary⁷ firm ID, product information (at HS-6 digits), date, destination (ISO3), shipment value in US dollars⁸ and net weight. In light of merging this dataset with other data, I ensure that the product codes belong to a single classification.⁹ After converting the data to HS2002, the number of unique observations at the country-firm-product-destination-year level is set at 1 million and 7 hundreds, approximately.

For the analysis, the firm's price is proxied by the fob unit value of every annual shipment, which is the value of shipment divided by quantity of shipment, at the country-firm-product-destination level. This proxy for price has been largely used in previous literature, as actual prices are typically not observed. Since the value of the shipments in the dataset is fob value, it should be seen as the "farm gate" price, not including the costs for shipping, handling, storage, marketing, or the tariff paid in the final destination. Therefore, the analysis is conducted under the assumption that this price should only include the mark-up applied by the firm and its marginal costs. The assumption that marginal costs are constant within a given firm for a specific product (variety) across destinations allows attributing differences in unit value to differences in mark-ups.

With regard to the firm, value, quantity and prices are the only information available. The dataset is then merged with destination and product specific characteristics such as the Rauch

_

⁶ In the case of Tanzania I have access to daily information at the 8 digit level, which I will use in the Robustness Section.

⁷ The firm ID is not the official identification number, for confidentiality issues. Also for confidentiality issues, the database did not contain any description or characteristic of the firm and its activities. For this reason it was not possible to identify and/or exclude wholesalers from the results.

⁸ The shipment values are converted from local currency to US dollars using average annual exchange rates from IFS-IMF.

⁹ The details of the cleaning procedure and conversion to HS2002 are reported in the Appendix.

¹⁰ Lavoie and Liu (2007) examine the potential bias in pricing-to-market results when using unit values aggregating differentiated products. They argue that more confidence can be placed on results obtained using disaggregated data for which there are good reasons to believe exporters have market power in the international market (for instance, they produce a differentiated product relative to other countries' products, the exporter has a large world market share, *et cetera*).

classification¹¹ (to classify products as homogeneous and differentiated goods), the demand elasticity of substitution estimated by Kee, Nicita and Olarreaga (2008), and the World Bank classification of countries into Low to High Income Countries.

1.1.Features of the data

Before starting the econometric analysis, it is useful to look at the descriptive statistics, which can already show some important features that motivate the rest of the analysis. Table 2 shows that, overall, the number of exporting firms, products and destinations served have increased overtime, in nearly all countries, and that the increase in the number of destinations has been very modest. Also the average number of firms exporting a specific product to a destination is quite stable and low. We can see that this number does not surpass two in LICs and LMICs, while it is above two in UMICs. This indicates that the competition across firms in the same product exported to a country is not very high, on average. At the same time, the number of destinations per firm-product pair is even lower (below two) on average. This last observation indicates that in this sample of nine countries only a few firms export the same product to multiple destinations, and consequently shed some doubts on the validity of the pricing-to-market hypothesis.

To overcome these doubts, it is useful to start looking at the variation in export prices across different dimensions. The first column of Table 3 reports the standard deviation (sd) of the logarithm of prices of each firm-product-destination-year by country. The sd of the logarithm of prices is very high, indicating that - not surprisingly - variation in export prices is considerable in each country. Since a clear source of variation in export prices is the fact that the dataset includes exports of a wide range of products¹², I first control for the variation in prices within products, across firm-destination pairs. This reduces the variation in prices considerably. Next, the high variation in the log of prices by firm-product pairs across destinations, as shown in Column 3, is a preliminary sign of price differentiation across destinations. This variation is highest for Malawi and Tanzania, two LICs. This observation justifies my hypothesis that pricingto-market is not necessarily linked to the development status of a country. This first description of the data also confirms that we should move beyond CES assumptions. In other words, the variation of prices across destinations indicates that firms charge different prices (and maybe sell different product varieties) across destinations. In fact Table 3 predicts that PTM is to be expected in both UMICs and LICs, and that this is not necessarily a prerogative of differentiated goods.

-

¹¹ http://www.macalester.edu/research/economics/PAGE/HAVEMAN/Trade.Resources/TradeData.html#Rauch

¹² In a robustness check, gold and precious ores (product 28, 27, and 68, at the SITC two digits) are excluded from the analysis. Results do not change, so that leaving these goods in the dataset does not modify the results. Results are available upon request.

Lastly, the products exported are classified according to the Rauch Classification¹³ (1999): (1) homogeneous goods are defined as products whose price is set on organized exchanges; (2) differentiated goods are products whose price is not set on organized exchanges and which lack a reference price because of their intrinsic features; (3) while goods not traded on organized exchanges that possess a benchmark price are defined as reference goods¹⁴. Based on this classification, a dummy variable for product differentiation is built: it is one if the product falls into category (2) and zero otherwise. As per Table 4, in terms of share of total observations (first two columns), except for Yemen, the majority of shipments from all countries correspond to trade in differentiated goods. Nevertheless, a look at the number of exported products indicates that all countries (excluding Albania) export more homogeneous than differentiated goods. This confirms that homogeneous goods are an important component of exports in this group of countries. Moreover we have seen from Table 3 that price varies across destinations also in homogeneous goods, even though to a lower extent compared to differentiated goods. This justifies the fact that I do not drop homogeneous goods from the sample, as done in most of the literature dealing with pricing-to-market.

•

¹³ The Rauch Classification is a measure of horizontal differentiation, not vertical. An example of horizontal differentiation is the ice-cream, which is produced in different tastes, but one is not necessarily better than the other.

¹⁴ Javorcik, B. and Narciso, G. (2008).

4. Analytical framework and testable hypothesis

The main aim of this paper is to examine whether even firms in LICs charge different prices if they serve multiple destinations in the same product. To this end, I use the fob unit value of each shipment in the dataset. This unit value should be seen as the "farm gate" price of the exported transaction, not including the costs for shipping, handling, storage, marketing, or the tariff paid in the final destination. Hence, the analysis is conducted under the assumption that this price should only include the mark-up applied by the firm and its marginal costs. Since I am interested in the variation of prices across destinations, I look at the variation in fob export prices charged by a firm f from country f on a specific product f across destinations f. This variation can be explained by equation (1):

(1)
$$price_{cfp,d} = f(\theta_{cfp}, X_d)$$

which shows that the variation in the fob export price charged by a firm f from country c on a product p depends on: θ_{cfp} , country-firm-product specific characteristics that differ across destinations (for instance the firm charging different mark-ups across destinations on a product); or X_d , a set of destination specific variables, like specific trade costs associated to different destinations or different elasticity of substitution. This also implies assuming that each product is of a specific variety or quality; consequently the marginal cost of a product sold by a firm remains unchanged across destinations, unless we allow for the possibility that a firm can sell different versions or qualities of the same product to different destinations. ¹⁵

In order to check what the source of the variation in prices is, I focus on the standard deviation of price, rather than directly on price. More specifically, I use the specification already adopted by Manova and Zhang (2012), who analyze the relationship between the number of destinations served and the variation in export prices. Accordingly, equation (2) examines the correlation between the price dispersion across destinations served by a firm f from country f in time f and the number of destinations served with the same product f in time f from country f in time f from c

(2)
$$sd_{cfpt}(\log price_{cfpdt}) = \alpha + \beta * \log(nr \ destinations_{cfpt}) + \delta_{cp} + \gamma_t + \varepsilon_{cfp}$$

This is an interesting way of posing the question, because it shows whether exporters that serve multiple destinations charge different prices or the same price in all destinations. Country-product and year fixed effects are included in the specification to control for good specific and year specific un-observables. The errors are clustered at the conservative country-firm-product level. The use of country-product fixed effects allows us to ask whether exporters that serve more destinations offer a wider range of export prices. Alternatively, country-firm-product fixed effects are used to control for country-firm-product un-observables and to have a stricter definition of within country-firm-product variation in prices. The use of this alternative fixed-

٠

¹⁵ This possibility is ruled out in Section 6.1, where I repeat the analysis at the 8 digits level of the Harmonized System to ensure that each product is of a different version or quality from the others.

effect modifies the question to whether firms charge a wider set of export prices if the number of destinations served increases overtime.

Subsequently, to test whether pricing-to-market is a characteristic of all products or only of differentiated products, I interact the number of destinations with a dummy variable (Diff) indicating if the good is differentiated:

(3)
$$sd_{cfnt}(\log price_{cfndt}) = \alpha + \beta * \log(nr \ destinations_{cfnt}) +$$

$$+\lambda*\log(nr \, destinations_{cfpt})*Diff + \delta_{cp} + \gamma_t + \varepsilon_{cfp}$$

As an additional check I also split the sample between homogeneous and differentiated goods, as defined by Diff. All the variables used in the analysis are described in the Appendix Table 1.

The **testable hypotheses** to be tested using equation (2) and equation (3) are as follows:

- 1. A firm from UMICs exporting a product to multiple destinations is expected to conduct pricing-to-market, or, said differently, to charge different prices in different destinations. As pointed out in Manova and Zhang (2012) this correlation is not mechanical, because firms could decide to charge the same price in every destination or a narrow set of prices across several destinations.
- 2. Pricing-to-market is expected only in differentiated goods, since homogeneous goods are not supposed to be differentiable. This is supported by a lower variation in prices across destinations for homogeneous goods (as per Table 3).
- 3. Small economies should be price takers, so firms from LMICs & LICs are not expected to conduct pricing-to-market.

Heterogeneity of demand

In order to capture the possibility that pricing-to-market is led by differences across destinations, the assumption of constant demand elasticity of substitution need to be abandoned. To this end, we need to assume variable demand elasticity of substitution (VES), where the variation is both across products and countries. This is possible using the demand elasticity of substitution estimated by Kee, Nicita and Olarreaga (2008). ¹⁶ This measure is

¹⁶ This measure is estimated for a broad range of countries at the six digits level for the period 1988–2001, and is defined as the percentage change in the quantity of an imported good when the price of this good increases by 1%, holding prices of all other goods, productivity, and endowments of the economy constant.

defined at the product-destination level and is assumed to be time-invariant. I use it to produce a dummy, which is one if the standard deviation of demand elasticity of substitution by product across destinations is higher than the median standard deviation. This dummy is included in equation (2) as follows:

(4)
$$sd_{cfpt}(\log price_{cfpdt}) = \alpha + \beta * \log(nr \, destinations_{cfpt})$$

 $+ \pi * \log(nr \, destinations_{cfpt}) * HSDE + \delta_{cfp} + \gamma_t + \varepsilon_{cfp}$

where HSDE is a dummy indicating whether the standard deviation of elasticity for a product p across destinations, $sd_p(elasticity_{pd})$, is higher than the median of all $sd_p(elasticity_{pd})$ across products. This measure is interacted with the $\log(nr\ destinations_{fpt})$ in order to verify whether pricing-to-market is led by the difference in tastes across destinations, in either differentiated or homogeneous goods. This implies assuming that HSDE is a proxy for the dispersion in tastes across destinations for each product.

5. Results

5.1.Pricing-to-market

Interestingly, as shown in Table 5, exporters that supply multiple destinations seem to have a higher price's dispersion across destinations, as confirmed by a significant and positive correlation between $sd_{cfpt}(\log price_{cfpdt})$ and $\log(nr \, destinations_{cfpt})$ in Column (1) of panel (A). In other words, firms charge different prices if they serve multiple destinations. This result is in fact confirmed for both the sub-sample of UMICs (Panel A) and LICs and LMICs (Panel B and corroborates my expectations for UMICs; however I also expected small economies to be price takers, so firms from LMICs & LICs were not expected to conduct pricing-to-market. This means that I have an unexpected result.

Most importantly, when I include the interaction with the "Rauch" dummy, in Column (2), I find it to be not significant, showing that pricing-to-market is not a specific characteristic of differentiated goods and that the pricing-to-market coefficient is not significantly different in homogeneous and differentiated goods. This result is confirmed once I divide the sample between homogeneous and differentiated goods, in Columns (3) and (4), in both Panel (A) and (B). This result is in contrast to the findings of previous literature, including Manova and Zhang (2012), who find pricing-to-market to be a characteristic of differentiated goods only. Intuitively, it is common to think that pricing-to-market is associated more with differentiated than with homogeneous goods, as it is linked to quality differentiation. This is a puzzling result that requires more attention.

Since there might be an omitted variable concern that the results are actually led by firm specific characteristics, in columns (5)-(8) of Table 5, in both Panels, the specification described by equation (2) and equation (3) are slightly modified so as to include country-firm-product fixed effects instead of country-product fixed-effects. This change allows explaining more precisely the variation in prices within a specific country-firm-product triplet. The results found in columns (1)-(4) hold when the specification changes, but the interpretation of the coefficient is somewhat different, since the use of country-firm-product fixed effects allows controlling for country-firm-product characteristics that are invariant over time, and so it allows to focus on whether firms that sell the same product over time have a higher price dispersion if they increase the number of destinations served. Results show that this is the case, for both types of goods and in both sub-samples of UMICs and LMICs.

To give an idea of the economic significance of the correlations shown in Table 5, it is useful to consider the effect of a one standard deviation increase in the number of destinations served by a country-firm-product triplet. In UMICs, a one standard deviation increase in the log (number of destinations), or 2.6 destinations, overtime would be associated to an increase in price dispersion (the standard deviation of the log (price)) of 7%. In other words, this means that the sd of the log(price) would increase from the 50th percentile to the 57st percentile. The economic significance of the correlation for LICs and LMICs is even higher. A one standard deviation increase in the log (number of destinations), or 2.2 destinations, overtime would be associated to an increase in price dispersion (the standard deviation of the log (price)) of 10%. In

terms of percentiles, the price dispersion would increase from the 50th percentile to the 58st percentile. Clearly these calculations reveal the correlation for the average product and the average destination country. As a consequence it means that these magnitudes would be much lower for sectors in the smallest quantiles, but they would be economically more relevant for sectors at the top of the distribution. The quantification of the correlations for each single country are reported in Table 6, and confirm that the results hold for all countries, and are not led by a few exceptions.

The results that pricing-to-market is not a prerogative of UMICs, and that it is conducted even in homogeneous goods is unsettling because it is common to think that small economies are price takers and that price dispersion is associated with differentiated rather than with homogeneous goods. However the standard results in the pricing-to-market literature are mainly related to developed or middle income countries. LICs and LMICs are important exporters of agriculture products, and have a comparative advantage in these products. This is shown in Table 7, where it is clear that the majority of products where LICs and LMICs countries have a Revealed Comparative Advantage (RCA) are Homogeneous goods. In fact, even though the average for LICs and LMICs indicates that these countries have an equal share of homogeneous and differentiated goods within their basket of RCA goods, at the country level the majority of countries have a RCA more in homogeneous than in differentiated goods.

Besides the RCA explanations given above, two main arguments might explain these results. One is the quality argument, according to which firms sell products of different qualities (and so of different prices due to different marginal costs) to different destinations – also called product differentiation. The other is the mark-up argument, which explains that firms charge different mark-ups in different markets – also known as price discrimination. A way to differentiate between "quality led" and "mark-up led" pricing-to-market would be to use an index of vertical differentiation, like the one built by Khandelwal (2010). The problem with this and other indices of vertical differentiation is that they do not include the products defined as homogeneous by Rauch (as they are assumed to be not differentiable). For this reason, since it is not possible to differentiate between quality and mark-up, I analyze the issue from a different point of view: the demand side.

5.2. Heterogeneity of demand

An alternative explanation to pricing-to-market can be given by focusing on the way products are perceived by consumers. The quality of a product could be perceived differently in different countries, and this would make quality a subjective rather than an objective concept, which could be exploited by exporters by charging different mark-ups or selling goods of different qualities in different markets. Different countries could have different perceptions of niche products even within homogeneous goods. In fact we have seen from the agriculture economics literature that homogeneous goods can be divided between commodities and specialty goods. For instance, coffee is considered a homogeneous good in the Rauch classification, while it is a product that can be differentiated by its intrinsic quality and different specialties (Arabica versus Robusta, organic versus non organic, et cetera).

Most importantly, each country might have its own tastes and sensitivities to the qualities of coffee. The quality of a product could be perceived differently in different countries and this would make quality a subjective rather than an objective concept, which could be exploited by exporters, by charging different mark-ups or exporting different varieties (or qualities) to different destinations. To take this into account, I use a demand side index, the Lee-Nicita-Olarreaga (2008) import demand elasticity of substitution.

The importance of taste in pricing-to-market is reported in Table 8, which shows different results for UMICs and LICs & LMICs. In Panel (A) I test equation (3) first only on differentiated goods and then on homogeneous goods (Columns (1) and (2)): in UMICs, pricing-to-market is confirmed, but it is not affected by the diversity of tastes within product across destinations. This is confirmed in Columns (3) to (6), where the sample is further divided in homogeneous and differentiated goods with a high or a low taste's diversity. However, when I repeat the analysis in the sub-sample of LICs & LMICs, in Panel (B), taste reveals an important factor, but only for homogeneous goods. More specifically, taste does not affect pricing-to-market for differentiated goods, as per Column (1). However, homogeneous goods are priced to market only if they face different tastes in different destinations. These results are further confirmed when the sample is split in four subsample in Columns (3)-(6). This indicates that pricing-tomarket in differentiated goods exported by LICs is explained by other factors that we are considering. However homogeneous goods require a highly diversified distribution of taste (demand elasticity of substitution) across destinations to be sold at different prices. This can be due to the fact that exporters exploit these different tastes and sensitivities across countries and charge different prices. So for instance coffee might be "homogeneous" by definition, but if the elasticity of substitution of coffee is different in diverse importing countries, then it means that different countries have different sensibilities to coffee and exporters can exploit the "taste premium". This would question the objective versus subjective nature of quality for some types of products.

The results in Table 8, together with results from Table 7, confirm that even in LICs, normally viewed as price takers, certain firms conduct pricing-to-market. This is evidence of a pricing behavior not commonly associated with countries like Tanzania or Burkina Faso, and that exporters from these countries are actually exploiting the difference in tastes across countries, at least in the products where the country has a comparative advantage and in products where exporters can differentiate their products by quality (or perceived quality) or market niches. Several reasons might lead to this behavior (from market power arguments to destination specific characteristics), but this result confirms that the law of one price does not necessarily apply to exports from LICs.

6. Robustness

6.1. Controlling for compositional effects

A potential concern to my analysis arises from the use of data at HS 6 digit level, which precludes the possibility to control for measurement errors. More specifically, each HS 6 digit product may consist of many HS 8 digit products. Consequently, a change (for instance increase) in the unit value of a HS 6 digit code could be due to (i) a change in the composition of one underlying HS 8 digit product, or (ii) it could genuinely be a change (increase) in prices across all underlying products. To establish pricing-to-market, it is essential to focus on the second channel. Consequently, I reproduce the results from Table 5 and Table 8 for the Tanzanian dataset at the HS 8 digit level. This explains the concerns expressed in Lavoie and Liu (2007), who examine the potential bias in pricing-to-market results when using unit values aggregating differentiated products. The authors argue that more confidence can be placed on results obtained using disaggregated data.

These concerns should be alleviated in Table 9, which shows (Panel (A)) that pricing-to-market is confirmed even using HS 8 digit data, for both differentiated and homogeneous goods. Moreover, Columns (5) and (6) in Panel (B) confirm the findings from Section 5.2, that homogeneous goods exported by LICs are priced to market only when they face very heterogeneous tastes across destinations. The results for differentiated goods (Columns (3) and (4)) are counter-intuitive, and indicate that probably factors other than taste heterogeneity lead pricing-to-market in these goods. However, what matter is that the use of data for Tanzania at the HS 8 digit level confirms the main findings of the paper: (i) that LICs can conduct pricing-to-market, even in homogeneous goods; and (ii) that there is evidence that pricing-to-market in homogeneous goods is done only when products face a highly diversified range of elasticities of substitutions (tastes) across destinations.

6.2. Alternative "Rauch" dummy

A further concern relates to the possibility that my results on homogeneous goods depend on the way I construct the "Rauch" dummy, which is one if goods are classified by Rauch (1999) as differentiated, and zero otherwise. Accordingly, homogeneous goods include, by construction, both differentiated and reference goods. This is consistent with Manova and Zhang (2012). In order to be more specific about homogeneous goods, I could re-build the dummy by simply ignoring reference goods, so as to assign zero to strictly defined homogeneous goods. In other words, based on the Rauch classification (as per Section 3.1), a dummy variable for product differentiation is one if the product falls into category (2) and zero if it falls into category (1) - Category (3) is left out. Once again, as per Table 10, the main results hold. Within each country-firm-product triplet, if firms increase the number of destinations to which they export, their

-

¹⁷ Access to HS 8 digit level data was available only for Tanzania.

price dispersion across destinations increases. LMICs and LICs conduct pricing-to-market in homogeneous goods only when the taste dispersion across destinations is high.

7. Concluding remarks

The analysis presented in this paper contributes to the literature on pricing-to-market by analyzing how exporters in LICs behave with respect to pricing decisions and whether firms adjust their prices according to their trade partner's characteristics. The empirical analysis draws from Manova and Zhang (2012) and partially confirms their results. Specifically, exporters that serve multiple destinations show higher price dispersion across importers, indicating that firms charge different prices if they serve multiple destinations. Interestingly, when the sample is reduced to homogeneous goods, the relationship between the number of destinations served and price dispersion holds positive, as with differentiated goods. This result applies to all countries (UMICS, LMICs and LICs) and is in contrast to the findings in previous literature - including Manova and Zhang (2012) - where pricing-to-market was a characteristic of differentiated goods only, as economic intuition would suggest.

While the homogenous goods result is unexpected, it is also justifiable. In most LICs, the agriculture sector remains the main source of employment. Moreover, most LICs have a comparative advantage in agricultural goods and, over the years, donor-driven projects have actively developed technologies to add value in agricultural production. For these reasons, the finding that price differentiation relates to homogeneous goods could be a first indication that the country's comparative advantage in homogeneous goods might signal the possibility to differentiate products by quality attributes or differences in variety. However, price differentiation is not only explained by quality. Pricing-to-market can also be led by firms charging different mark-ups. Unfortunately, it is not possible to discern between price discrimination and product differentiation with these data.

I overcome this constraint by analyzing the issue from the demand side. Using the Lee-Nicita-Olarreaga (2008) import demand elasticity of substitution, I find that dispersion in "tastes" across destinations determines pricing-to-market in homogeneous goods exported by LICs and LMICs. This finding can be attributed to exporters recognizing and exploiting the "taste premium" by charging different prices (either due to different mark-ups or different marginal-costs/qualities/varieties) in different destinations. This interesting result calls into question the objective versus subjective nature of quality for some types of products. It might suggest that countries with a RCA in homogeneous goods can still undertake price differentiation across destinations.

Moreover, these results may challenge the common way of classifying products. The agriculture economics literature has long seen agricultural goods as either commodities or specialty goods. Accordingly, it has adapted its way of classifying goods to changing and increasingly demanding consumers. As a consequence, these findings might encourage new areas of work in the construction of indices of product classification that could better reflect the reality shown in the data.

•

¹⁸ Koshuma, K.P. R. and Mmasi, S.M., (2008).

In fact, even though it is a standard practice to treat agricultural commodities as homogeneous goods, these commodities are increasingly perceived by consumers as differentiable by quality, according to production practices, seeds, geographical locations of production, sanitary and phyto-sanitary measures and food safety requirements. For this reason, differences in brand, quality and other product aspects differentiate them for international trade. ¹⁹ Allowing for the possibility that food products can be vertically differentiable amplifies the spectrum of existing opportunities for developing countries to exploit product differentiation and market niches in countries where consumers are willing to pay more for products that satisfy specific quality characteristics.

Even though the results in this paper cannot provide a conclusive answer to the question of what is leading price dispersion for multiple-destinations exporters, they do provide preliminary evidence that even exporting firms in small LICs, which are normally viewed as price-takers, charge different prices for the same product across destinations. Several factors may contribute to this behavior, ranging from market power arguments to destination specific characteristics, but what matter most is that the law of one price does not necessarily apply to small LICs.

References

Alessandria, G., Kaboski, J.P., 2011. Pricing-to-Market and the Failure of Absolute PPP. American Economic Journal: Macroeconomics 3, 91–127.

Andriamananjara, S., Cadot, O., Grether, J.-M., 2010. Tools for applied trade-policy analysis: An introduction.

Antoniades, A., 2008. Heterogeneous Firms, Quality and Trade (Working Paper No. 004). FREIT.

Asprilla, A., Berman, N., Cadot, O., Jaud, M., 2014. Pricing-to-market as a Revelator of Policy-induced Market Power.

Atkeson, A., Burstein, A., 2008. Pricing-to-Market, Trade Costs, and International Relative Prices. American Economic Review 98, 1998–2031.

Baldwin, R., Harrigan, J., 2011. Zeros, Quality, and Space: Trade Theory and Trade Evidence. American Economic Journal: Microeconomics 3, 60–88.

Baldwin, R., Ito, T., 2011. Quality Competition Versus Price Competition Goods: An Empirical Classification. Journal of Economic Integration 26, 110–135.

Bastos, P., Silva, J., 2010. The quality of a firm's exports: Where you export to matters. Journal of International Economics 82, 99–111.

¹⁹ Saker and Surry (2006)

Berman, N., Martin, P., Mayer, T., 2012. How do Different Exporters React to Exchange Rate Changes? The Quarterly Journal of Economics 127, 437–492.

Brambilla, I., Lederman, D., Porto, G., 2012. Exports, Export Destinations, and Skills. American Economic Review 102, 3406–3438.

Cadot, O., Iacovone, L., Pierola, D., Rauch, F., 2011. Success and failure of African exporters (Policy Research Working Paper Series No. 5657). The World Bank.

Centner, T.J., Turner, S.C., Bryan, J.T., 1989. PRODUCT DIFFERENTIATION PROTECTION: DEVELOPING A STRATEGY FOR MULTIPLE PRODUCERS OF REGIONAL SPECIALTY CROPS. Journal of Food Distribution Research 20.

Coon, J., 2009. Developing Export Market Information System: Status, Challenges and Priorities for Tanzania (Policy Note). The World Bank.

Crozet, M., Head, K., Mayer, T., 2009. Quality Sorting And Trade: Firm-Level Evidence For French Wine (Working Paper No. 53883). American Association of Wine Economists.

Di Comite, F., Thisse, J.-F., Vandenbussche, H., 2014. Verti-zontal differentiation in export markets. Journal of International Economics 93, 50–66.

Dunn, R.M., 1970. Flexible exchange rates and oligopoly pricing: A study of Canadian markets. Journal of Political Economy 78, 140 – 151.

Fajgelbaum, P., Grossman, G.M., Helpman, E., 2011. Income Distribution, Product Quality, and International Trade. Journal of Political Economy 119, 721 – 765.

Falk, M., Falk, R., 2000. Pricing to Market of German Exporters: Evidence from Panel Data. Empirica 27, 21–46.

Feenstra, R.C., 1989. Symmetric pass-through of tariffs and exchange rates under imperfect competition: An empirical test. Journal of International Economics 27, 25–45.

Fieler, A.C., 2011. Nonhomotheticity and Bilateral Trade: Evidence and a Quantitative Explanation. Econometrica 79, 1069–1101.

Flach, L., 2014. Quality upgrading and price heterogeneity: evidence from Brazilian manufacturing exporters. Presented at the CESifo Area Conference on Global Economy, CESifo, Munich, Germany.

Flach, L., Janeba, E., 2013. Income Inequality and Export Prices across Countries (CESifo Working Paper Series No. 4298). CESifo Group Munich.

Forman, H., Hunt, J.M., 2005. Managing the influence of internal and external determinants on international industrial pricing strategies. Industrial Marketing Management 34, 133–146.

Freund, C., Pierola, D., 2011. Global Patterns in Exporter Entry and Exit (Policy Research Working Paper Series). The World Bank.

Gagnon, J.E., Knetter, M.M., 1995. Markup adjustment and exchange rate fluctuations: evidence from panel data on automobile exports. Journal of International Money and Finance 14, 289–310.

Glauben, T., Loy, J.-P., 2007. Pricing-to-Market versus Residual Demand Elasticity Analysis of Imperfect Competition in Food Exports: Evidence from Germany. Journal of Agricultural & Evidence Industrial Organization 1, 1004–1004.

Goldberg, P.K., Knetter, M.M., 1997. Goods Prices and Exchange Rates: What Have We Learned? Journal of Economic Literature 35, 1243–1272.

Görg, H., Halpern, L., Muraközy, B., 2010. Why do within firm-product export prices differ across markets? (CEPR Discussion Paper No. 7708). C.E.P.R. Discussion Papers.

Hallak, J.C., 2006. Product quality and the direction of trade. Journal of International Economics 68, 238–265.

Hallak, J.C., Schott, P.K., 2011. Estimating Cross-Country Differences in Product Quality. The Quarterly Journal of Economics 126, 417–474.

Hallak, J.C., Sivadasan, J., 2008. Productivity, quality and exporting behavior under minimum quality constraints (MPRA Paper No. 24146). University Library of Munich, Germany.

Hummels, D., Klenow, P.J., 2005. The Variety and Quality of a Nation's Exports. American Economic Review 95, 704–723.

Hummels, D., Skiba, A., 2004. Shipping the Good Apples Out? An Empirical Confirmation of the Alchian-Allen Conjecture. Journal of Political Economy 112, 1384–1402.

lacovone, L., Javorcik, B.S., 2008. Multi-product exporters: diversification and micro-level dynamics (Policy Research Working Paper Series No. 4723). The World Bank.

Ito, T., 2011. Revisiting the determinants of unit prices (Working Paper No. 316). FREIT.

Javorcik, B.S., Narciso, G., 2008. Differentiated products and evasion of import tariffs. Journal of International Economics 76, 208–222.

Julien, M., n.d. Markups, quality, and transport costs. European Economic Review.

Kee, H.L., Nicita, A., Olarreaga, M., 2008. Import Demand Elasticities and Trade Distortions. The Review of Economics and Statistics 90, 666–682.

Khandelwal, A., 2010. The Long and Short (of) Quality Ladders. Review of Economic Studies 77, 1450–1476.

Kneller, R., Yu, Z., n.d. Quality Selection, Chinese Exports and Theories of Heterogeneous Firm Trade (Discussion Paper No. 08/44). University of Nottingham, GEP.

Knetter, M.M., 1989. Price Discrimination by U.S. and German Exporters. American Economic Review 79, 198–210.

Knetter, M.M., 1993. International Comparisons of Price-to-Market Behavior. American Economic Review 83, 473–86.

Koshuma, K.P.R., Mmasi, S.M., 2008. Unleashing the Potential Of Tanzanian Farm Produce. Tanzania Engineering and Manufacturing Design Organization (TEMDO).

Krugman, P., 1986. Pricing to Market when the Exchange Rate Changes (NBER Working Paper No. 1926). National Bureau of Economic Research, Inc.

Kugler, M., Verhoogen, E.A., 2009. The Quality-Complementarity Hypothesis: Theory and Evidence from Colombia (CEPR Discussion Paper No. 7119). C.E.P.R. Discussion Papers.

Lavoie, N., Liu, Q., 2007. Pricing-to-Market: Price Discrimination or Product Differentiation? Am. J. Agr. Econ. 89, 571–581.

Mallick, S., Marques, H., 2008. Passthrough of Exchange Rate and Tariffs into Import Prices of India: Currency Depreciation versus Import Liberalization. Review of International Economics 16, 765–782.

Mann, C., 1986. Prices, Profit Margins and Exchange Rates. Federal Reserve Bulletin 7E, 367–379.

Manova, K., Zhang, Z., 2012. Export Prices across Firms and Destinations. Quarterly Journal of Economics 379–436.

Marston, R.C., 1990. Pricing to market in Japanese manufacturing. Journal of International Economics 29, 217–236.

Martin, J., 2012. Markups, quality, and transport costs. European Economic Review 56, 777–791.

Melitz, M.J., 2003. The Impact of Trade on Intra-Industry Reallocations and Aggregate Industry Productivity. Econometrica 71, 1695–1725.

Melitz, M.J., Ottaviano, G.I.P., 2008. Market Size, Trade, and Productivity. Review of Economic Studies 75, 295–316.

Olarreaga, M., Özden, Ç., 2005. AGOA and Apparel: Who Captures the Tariff Rent in the Presence of Preferential Market Access? The World Economy 28, 63–77.

Pall, Z., Perekhozhuk, O., Teuber, R., Glauben, T., 2013. Are Russian Wheat Exporters Able to Price Discriminate? Empirical Evidence from the Last Decade. Journal of Agricultural Economics 64, 177–196.

Rauch, J.E., 1999. Networks versus markets in international trade. Journal of International Economics 48, 7–35.

Rollo, V., 2012. Determinants of Tanzanian export prices (Policy Research Working Paper Series No. 6225). The World Bank.

Sarker, R., Surry, Y., 2006. Product Differentiation and Trade in Agri-Food Products: Taking Stock and Looking Forward. Journal of International Agricultural Trade and Development 2, pp. 39–78.

Stahl, M., n.d. Tariff Liberalization Impacts of the EAC Customs Union in Perspective (Working Paper No. 4). Tralac.

Tang, H., Zhang, Y., 2011. Quality Differentiation and Trade Intermediation. Presented at the Econometric Society Meeting.

Unnevehr, L., Eales, J., Jensen, H., Lusk, J., McCluskey, J., Kinsey, J., 2010. Food and Consumer Economics. Am. J. Agr. Econ. 92, 506–521.

Yu, Z.G., 2010. Tariff Pass-Through, Firm Heterogeneity and Product Quality (Working Paper No. 10-37). Center for Economic Studies, U.S. Census Bureau.

Tables

Table 1: Observations by Country

Country	Observations	Years	Income Group
Albania*	46,693	2004-2009	LMIC
Burkina Faso	11,882	2005-2010	LIC
Bulgaria	819,927	2001-2006	UMIC
Jordan	72,624	2003-2011	UMIC
Malawi	15,011	2004-2009	LIC
Peru	638,031	2000-2009	UMIC
Senegal	72,623	2000-2010	LMIC
Tanzania	76,331	2003-2009	LIC
Yemen	17,445	2006-2010	LMIC
Total	1770567	2000-2011	

*Note: Albania has been promoted to UMIC in 2013, but I leave it in the previous income group since the data I analyse is in a period where it was a LMIC.

Table 2: Sample Characteristics

Year	Firms	Products	Destinations	Firms by product (Mean)	Firms by product destination (Mean)	t- Destinations by product (Mean)	Destinations by firm-product (Mean)	Year	Firms	Products	Destinations	Firms by product (Mean)	Firms by product destination (Mean)	by product (Mean)	Destinations by firm-product (Mean)
			All	bania								Peru			
2004	1516	1557	80	3.6	2.0	1.8	1.1	1999	3885	2864	147	8.5	2.4	5.2	1.5
2005	1612	1475	75	4.0	2.0	1.9	1.1	2000	4003	2961	149	9.1	2.5	5.4	1.5
2006	1741	1511	83	4.4	2.0	2.0	1.1	2001	4336	2942	151	10.2	2.5	5.5	1.5
2007	3828	1547	91	8.2	4.1	2.1	1.1	2002	4659	3121	145	10.6	2.6	5.4	1.5
2008	2095	1736	85	4.6	2.0	2.2	1.2	2003	5045	3175	162	12.7	2.7	5.9	1.5
2009	2115	1867	89	4.8	1.9	2.4	1.1	2004	5442	3248	175	14.4	2.8	6.3	1.5
			Burki	na Faso				2005	6015	3368	172	16.3	2.9	6.7	1.5
2005	305	641	78	2.4	1.5	2.1	1.4	2006	6472	3382	177	17.9	3.1	6.9	1.5
2006	318	635	82	2.4	1.5	2.1	1.4	2007	6666	3425	170	17.3	3.1	7.0	1.5
2007	470	730	84	2.6	1.5	2.2	1.3	2008	7126	3315	170	18.6	3.2	7.5	1.5
2008	502	637	83	2.5	1.5	2.1	1.3	2009	7321	3323	172	18.2	3.2	7.3	1.5
2009	392	599	91	2.2	1.3	2.0	1.3				S	enegal			
2010	484	670	91	2.2	1.4	2.1	1.3	2000	422	1182	77	2.3	1.4	2.8	1.7
			Bu	lgaria				2001	486	1163	77	2.5	1.4	2.9	1.7
2001	19373	4112	181	20.8	2.7	10.9	1.4	2002	536	1284	84	2.5	1.4	2.9	1.6
2002	18747	4267	188	22.6	2.7	11.8	1.5	2003	594	1416	82	2.9	1.4	3.1	1.6
2003	16834	4289	184	23.4	2.7	12.6	1.5	2004	638	1447	93	3.1	1.5	3.2	1.7
2004	14768	4256	176	22.2	2.6	12.3	1.6	2005	672	1516	93	3.3	1.5	3.1	1.6
2005	14186	4232	185	22.6	2.6	12.7	1.6	2006	708	1524	94	3.5	1.5	3.1	1.6
2006	13844	4238	194	22.5	2.6	13.2	1.6	2007	719	1571	105	3.5	1.5	3.3	1.6
			Jo	rdan				2008	776	1631	107	3.8	1.5	3.3	1.6
2003	1351	1070	134	3.7	1.6	3.2	1.7	2009	802	1551	110	3.8	1.5	3.4	1.6
2004	1304	1078	128	3.7	1.6	3.2	1.7	2010	776	1529	96	3.2	1.5	3.4	1.6
2005	1477	1206	143	4.4	1.6	3.6	1.7				Т	anzania			
2006	1762	1280	142	5.2	1.8	3.7	1.7	2003	1201	2176	143	2.9	1.5	3.3	1.7
2007	1852	1346	145	5.4	1.8	3.9	1.8	2004	1347	2146	138	3.3	1.6	3.3	1.6
2008	2002	1347	156	6.0	2.0	4.0	1.8	2005	1596	2150	141	3.4	1.6	3.1	1.5
2009	2208	1382	150	6.6	2.1	3.9	1.7	2006	1719	2151	144	3.5	1.5	3.1	1.4
2010	2345	1374	148	5.6	2.1	4.1	1.7	2007	1952	2346	139	3.7	1.6	3.2	1.4
2011	1322	764	106	3.4	1.7	3.0	1.5	2008	2065	2255	150	4.1	1.7	3.2	1.4
			M	alawi				2009	1817	1947	138	3.8	1.7	2.8	1.3
2004	164	234	49	1.9	1.3	1.6	1.1				3	Yemen			
2005	667	926	110	3.9	1.6	2.6	1.2	2006	487	573	73	4.5	2.0	2.4	1.4
2006	839	932	102	4.1	1.6	2.7	1.1	2007	466	586	78	4.7	2.1	2.4	1.3
2007	536	834	107	2.9	1.4	2.4	1.3	2008	552	665	89	4.9	2.0	2.6	1.4
2008	530	969	108	2.6	1.4	2.2	1.3	2009	583	668	88	5.9	2.4	2.6	1.3
2009	231	396	71	1.7	1.2	1.8	1.3	2010	572	643	96	4.8	2.3	2.7	1.4

Table 3: Variation in Export Prices

Across:	Across: Across: destinations, and years		Destinations					
Country	sd (log(price))	sd (log(price)) by product year	sd (log(price),	oduct year				
	All	All	All	Diff	Hom			
Albania	2.45	1.13	0.60	0.68	0.35			
Burkina Faso	2.34	0.93	0.48	0.60	0.33			
Bulgaria	1.93	1.18	0.56	0.61	0.41			
Jordan	1.92	0.79	0.48	0.52	0.40			
Malawi	1.96	1.29	0.72	0.84	0.57			
Peru	1.71	1.09	0.44	0.45	0.36			
Senegal	1.84	0.91	0.43	0.53	0.28			
Tanzania	2.37	1.44	0.83	0.88	0.59			
Yemen	3.38	0.87	0.47	0.63	0.39			

Table 4: Proportion of differentiated and homogeneous products exported

Country	Diff prod	mber of	Share of Hom and Diff products over total number of exported products			
	Hom	Diff	Hom	Diff		
Albania	17.39	82.61	29.69	70.31		
Burkina Faso	41.36	58.64	54.07	45.93		
Bulgaria	24.09	75.91	55.38	44.63		
Jordan	37.46	62.54	86.11	13.89		
Malawi	27.60	72.40	60.00	40.00		
Peru	22.58	77.42	75.28	24.72		
Senegal	37.51	62.49	75.00	25.00		
Tanzania	36.99	63.01	85.29	14.71		
Yemen	59.15			16.67		

Table 5: Pricing-to-market in homogeneous and differentiated goods

Panel A: Upper Middle Income Countries

Dependent v	ariable: sd(lo	g(price)) a	cross destin	ations within	n a country f	irm product	t triplet	
Variation Across:		firms (or time)		time			
Within	Within:					country-fi	rm-product	
VARIABLES	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
	ALL	ALL	Hom	Diff	ALL	ALL	Hom	Diff
log(nr dest by cfp)	0.043***	0.046***	0.045***	0.041***	0.076***	0.074***	0.072***	0.075***
	(0.000)	(0.000)	(0.000)	(0.000)	(0.000)	(0.000)	(0.000)	(0.000)
log(nr dest by cfp)*Diff		-0.005				0.001		
		(0.331)				(0.960)		
FE	с-р	с-р	c-p	с-р	c-f-p	c-f-p	c-f-p	c-f-p
Year FE	Y	Y	Y	Y	Y	Y	Y	Y
Observations	187004	179653	47414	132239	187004	179653	47414	132239
R-squared	0.220	0.219	0.268	0.190	0.737	0.737	0.708	0.739
f-p cluster	88311	84436	19641	64795	88311	84436	19641	64795

Panel B: Lower Middle Income & Low Income Countries

Dependent v	ariable: sd(lc	g(price)) ac	cross destin	ations within	n a country f	ïrm product	t triplet	
Variation Across:		firms (or time)		time			
Within	:	country	-product			country-fi	rm-product	
VARIABLES	(1) (2) (3) (4)			(5)	(6)	(7)	(8)	
	All	All	Hom	Diff	All	All	Hom	Diff
log(nr dest by fp)	0.078***	0.059***	0.059***	0.045***	0.128***	0.124***	0.125***	0.108***
	(0.000)	(0.000)	(0.000)	(0.001)	(0.000)	(0.000)	(0.000)	(0.000)
log(nr dest by fp)*Diff		-0.013				-0.015		
		(0.479)				(0.685)		
FE	с-р	с-р	c-p	с-р	c-f-p	c-f-p	c-f-p	c-f-p
Year FE	Y	Y	Y	Y	Y	Y	Y	Y
Observations	27191	25441	10887	14554	27191	25441	10887	14554
R-squared	0.402	0.372	0.322	0.362	0.776	0.768	0.739	0.769
f-p cluster	14627	13706	5551	8155	14627	13706	5551	8155

Robust p-values in parentheses

Table 6: Economic significance of correlations by country

^{***} p<0.01, ** p<0.05, * p<0.1

Valentina Rollo

Panel A: Upper Middle Income Countries

Country	Correlation between price dispersion and number of destinations	sd (log(nr dest by cfp))	Increase in number of destinations	Percentage increase in price dispersion accompanying an increase in the number of destinations served
Bulgaria	0.08	0.98	2.65	7.42
Jordania	0.04	1.01	2.74	4.53
Peru	0.08	0.92	2.50	7.34
UMICs*	0.08	0.95	2.60	7.25

Panel B: Lower Middle Income & Low Income Countries

Country	Correlation between price dispersion and number of destinations	sd (log(nr dest by cfp))	Increase in number of destinations	Percentage increase in price dispersion accompanying an increase in the number of destinations served
Albania	0.24	0.48	1.61	11.55
Burkina Faso	0.19	0.69	1.99	13.24
Malawi	NS	0.85	2.34	NA
Senegal	0.07	0.85	2.35	6.01
Tanzania	0.17	0.87	2.38	14.76
Yemen	0.21	0.84	2.32	17.57
LICs & LMICs**	0.13	0.81	2.25	10.37

^{*} From Table 5, Panel (A)

^{**} From Table 5, Panel (B)

Table 7: RCA by country in 2006

Country		Numbe	er of produc RCA>1	cts with	Share of products with RCA>I			
		Tot	Diff	Нот	Tot	Diff	Hom	
				UM	IC s			
Bulgaria		928	616	312	26.68	66.38	33.62	
Jordan		270	168	102	28.54	62.22	37.78	
Peru		410	186	224	14.84	45.37	54.63	
	Average	536	323	213	23.36	57.99	42.01	
				LICs &	<i>LMICs</i>			
Albania		279	228	51	35.72	81.72	18.28	
Burkina Faso		72	32	40	29.63	44.44	55.56	
Malawi		105	64	41	27.93	60.95	39.05	
Senegal		160	74	86	18.16	46.25	53.75	
Tanzania		220	103	117	21.44	46.82	53.18	
Yemen		56	14	42	19.44	25.00	75.00	
	Average	149	86	63	25.39	50.86	49.14	

Note: These statistics are calculated based on the total number of products where RCA info is available. The RCA information was extracted from the World Bank's WITs.

Table 8: Pricing-to-market explained by heterogeneity in taste across destinations

Panel A: Upper Middle Income Countries

Dependent variable: sd(log(price)) across destinations within a country firm product triplet Variation Across: time

Within: country-firm-product

VARIABLES	(1)	(2)	(3)	(4)	(5)	(6)
	Diff	Hom	D	iff	Hom	
	DIII	пош	Low sd	High sd	Low sd	High sd
log(nr dest by cfp)	_0.068***	_0.076***	0.069***	_0.082***	0.076***	0.066***
	(0.000)	(0.000)	(0.000)	(0.000)	(0.000)	(0.000)
log(nr dest by cfp)*High sd(sigma)	0.015	-0.011				
	(0.291)	(0.512)				
FE	c-f-p	c-f-p	c-f-p	c-f-p	c-f-p	c-f-p
Year FE	Y	Y	Y	Y	Y	Y
Observations	121654	42714	66956	54698	15567	27147
R-squared	0.740	0.704	0.730	0.752	0.679	0.719
f-p cluster	12455	6267	8976	8317	3122	4759

Panel B: Lower Middle Income & Low Income Countries

Dependent variable: sd(log(price)) across destinations within a country firm product triplet Variation Across: time

Within: country-firm-product

VARIABLES	(1)	(2)	(3)	(4)	(5)	(6)
	Diff	Hom	D	iff	Н	om
	Dill	ПОШ	Low sd	High sd	Low sd	High sd
log(nr dest by cfp)	0.115***	0.055	0.116***	0.092*	0.054	0.172***
	(0.005)	(0.114)	(0.005)	(0.084)	(0.133)	(0.000)
log(nr dest by cfp)*High sd(sigma)	-0.023	0.115**				
	(0.704)	(0.015)				
FE	c-f-p	c-f-p	c-f-p	c-f-p	c-f-p	c-f-p
Year FE	Y	Y	Y	Y	Y	Y
Observations	13237	10003	7802	5435	3570	6433
R-squared	0.763	0.729	0.774	0.746	0.727	0.731
f-p cluster	2451	2095	1761	1460	952	1677

Robust p-values in parentheses

^{***} p<0.01, ** p<0.05, * p<0.1

Table 9: Tanzania data at 8 digits

Panel A: Pricing-to-market

Dependent	variable: sd	(log(price)) across dest	inations with	hin a countr	y firm produ	ıct triplet		
Variation Across:		firms ((or time)			time			
Within:		country	y-product	product country-firm-product					
VARIABLES	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	
	ALL	ALL	Hom	Diff	ALL	ALL	Hom	Diff	
log(nr dest by cfp)	0.145***	0.066**	0.068***	0.088***	0.199***	0.153***	0.158***	0.139**	
	(0.000)	(0.011)	(0.008)	(0.001)	(0.000)	(0.002)	(0.001)	(0.026)	
log(nr dest by cfp)*Diff		0.023				-0.007			
		(0.533)				(0.932)			
FE	p	p	p	p	f-p	f-p	f-p	f-p	
Year FE	Y	Y	Y	Y	Y	Y	Y	Y	
Observations	10148	8963	3790	5173	10148	8963	3790	5173	
R-squared	0.359	0.324	0.304	0.306	0.744	0.737	0.723	0.734	
f-p cluster	5692	5046	1979	3067	5692	5046	1979	3067	

Panel B: Heterogeneity in taste across destinations

Dependent variable: sd(log(price)) across destinations within a country firm product triplet Variation Across: time

Within: country-firm-product

VARIABLES	ES (1)		(3)	(4)	(5)	(6)	
	Diff	Hom	Diff		Hom		
	Dill	110111	Low sd	High sd	Low sd	High sd	
log(nr dest by cfp)	0.179**	0.101	0.188**	0.078	0.119	0.172***	
	(0.014)	(0.124)	(0.011)	(0.405)	(0.112)	(0.005)	
log(nr dest by cfp)*High	-0.099	0.080					
	(0.384)	(0.348)					
FE	f-p	f-p	f-p	f-p	f-p	f-p	
Year FE	_ Y	Y	Y	_ Y	Y	_ Y	
Observations	4757	3518	2781	1976	1215	2303	
R-squared	0.728	0.709	0.744	0.697	0.694	0.719	
f-p cluster	739	666	523	482	278	544	

Robust p-values in parentheses

*** p<0.01, ** p<0.05, * p<0.1

FΕ

Year FE

Observations

R-squared

f-p cluster

Table 10: Alternative "Rauch dummy"

Dependent variable: sd(log(price)) across destinations within a country firm product triplet

Panel A: Pricing-to-market

UMICs LICs & LMICs **VARIABLES** (1) (2) (3) (4) (5) (6) (7)(8)ALL ALL Diff ALL ALL Hom Hom Diff 0.128*** 0.165*** 0.166*** 0.108*** 0.076*** 0.048*** 0.048*** 0.075*** log(nr dest by cfp) (0.000) (0.000) (0.000)(0.000)(0.000) (0.000)(0.000)(0.000)0.028** -0.057 log(nr dest by cfp)*Diff (0.045)(0.233)

c-f-p

13177

0.686

5056

c-f-p

Y

132239

0.739

64795

c-f-p

145416

0.741

69851

c-f-p

187004

0.737

88311

c-f-p

Y

27191

0.776

14627

c-f-p

Y

18837

0.766

10412

c-f-p

4283 0.719

2257

c-f-p

Y

14554

0.769

8155

Panel R:	Heterogene	ity in tas	ste across d	lestinations

Dependent variable: sd(log(price)) across destinations within a country firm product triplet

	UMICs				LICs & LMICs				
VARIABLES	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	
	Diff	Diff		Hom		Diff		Hom	
	Low sd Hi	gh sd	Low sd	High sd	Low sd	High sd	Low sd	High sd	
log(nr dest by cfp)	0.069*** 0.0	82***	0.075**	0.038***	0.116***	0.092*	0.106	0.178***	
	(0.000) (0	.000)	(0.022)	(0.003)	(0.005)	(0.084)	(0.221)	(0.000)	
FE	c-f-p c	-f-p	c-f-p	c-f-p	c-f-p	c-f-p	c-f-p	c-f-p	
Year FE	Y	Y	Y	Y	Y	Y	Y	Y	
Observations	66956 54	1698	3166	8920	7802	5435	903	2969	
R-squared	0.730 0	.752	0.621	0.718	0.774	0.746	0.759	0.690	
f-p cluster	8976 8	317	702	1620	1761	1460	327	990	

Robust p-values in parentheses

Appendix: Cleaning procedure

The data used in this paper includes six digits data for Albania, Bulgaria, Burkina Faso, Peru, Senegal, Jordan, Malawi, and Yemen and 8 digits data for Tanzania.

The first step in the cleaning procedure is to drop, from the raw data, observations for which firm, product and destination cannot be identified.

Secondly, before merging the data with product and country characteristics, I have to solve a well-known problem: conversion of products to the same classification²⁰. In this data it is not

²⁰ Moreover, I only keep years from 2000 to 2011. This choice is motivated by the need to convert all products across the years to a single HS classification. By choosing 2000 to 2011 I remove the need to convert products from

^{***} p<0.01, ** p<0.05, * p<0.1

possible to know what HS-classification has been used to register the data. In fact, the HS 6-digit product codes included in each of the datasets are those provided by the countries and may be at different revision levels depending on the year. As a consequence, for the same country, different classifications could have been used in different years. In order to assess which specific HS revision is used for each country in each year I compare the list of product codes in the country's dataset in a year to the lists of product codes included in HS 1996, HS 2002 and HS 2007 classifications as provided in WITS/COMTRADE. Consequently, I should convert all observations to the same HS2002 classification.

It would be useful to simply use the standard conversion tables freely available, however the relationship from one classification (say 1996) to the other (say 2002) is not always unique, as sometimes one HS1996 code is converted to many HS2002 codes, or many HS1996 codes are converted to the same HS2002 code. This creates many *duplicates*. Moreover it is very common that the multiple codes generated are not even in the same group of differentiated goods or homogeneous goods. This means that simply dropping duplicates could change the data in a way that could eventually change the results of my analysis, which focuses on the Rauch Classification.

To reduce the problems with duplicates, I have decided to "clean" the conversion tables so as to leave only unique relationships. This means that if a HS1996 code is converted in many HS2002 codes, I check if these HS2002 codes are all differentiated or not. If this is the case, I can just keep anyone of them. If this is not the case then I check the percentage of differentiated versus not differentiated goods, and then select any code in the category (homogeneous or differentiated) that represent the majority. If a HS1996 product is converted to the same number of differentiated and not differentiated products, then I do not convert, I drop these conversions from the table not to have to pick a case. At this point, I am left with the possibility that many HS1996 codes are converted to the same HS2002 code. This is a problem only if the same firm is exporting two HS1996 codes, because after converting to HS2002 it would wrongly appear that the same firm is exporting two different quantities of the same product. So after the conversion, if I encounter these issues I re-convert HS2002 to the original classification, not to create fault duplicates.

This cleaning procedure is useful because it allows converting products to the same HS2002 classification, and then merging the data with the Rauch Classification (also converted to HS2002) and to the Knee, Nicita, Olarreaga elasticity of substitution, also converted to HS2002.

Appendix Table 1: Description of Variables Used

Name	Description		Mean	Std. Dev.
Dependent Variable				
$sd_{cfpt}log(price_{cfpdt})$	Standard deviation of logarithm of fob price across destinations within a country firm product triplet		0.51	0.53
Correlated variable				
$log(nr of destinations_{cfpt})$	Logarithm of number of destinations served by a country-firm-product-year quartet	ALL	0.72	0.94
		UMICs	0.74	0.95
		LMICs & LICs	0.57	0.82
Interaction Variables				
Diff	Dummy variable indicating whether the good is differentiated or			
	homogeneous (according to the Rauch classification)			
HSDE	Dummy variable indicating if a product' standard deviation of demand			
	elasticity of substitution - across destinations - is above/below the median			
	standard deviation			